วันจันทร์ที่ 10 กันยายน พ.ศ. 2555


คอมพิวเตอร์ Data
คอมพิวเตอร์ (อังกฤษ: computer) หรือในภาษาไทยว่า คณิตกรณ์[2][3] เป็นเครื่องจักรแบบสั่งการได้ที่ออกแบบมาเพื่อดำเนินการกับลำดับตัวดำเนินการทางตรรกศาสตร์หรือคณิตศาสตร์ โดยอนุกรมนี้อาจเปลี่ยนแปลงได้เมื่อพร้อม ส่งผลให้คอมพิวเตอร์สามารถแก้ปัญหาได้มากมาย
คอมพิวเตอร์ถูกประดิษฐ์ออกมาให้ประกอบไปด้วยความจำรูปแบบต่าง ๆ เพื่อเก็บข้อมูล อย่างน้อยหนึ่งส่วนที่มีหน้าที่ดำเนินการคำนวณเกี่ยวกับตัวดำเนินการทางตรรกศาสตร์ และตัวดำเนินการทางคณิตศาสตร์ และส่วนควบคุมที่ใช้เปลี่ยนแปลงลำดับของตัวดำเนินการโดยยึดสารสนเทศที่ถูกเก็บไว้เป็นหลัก อุปกรณ์เหล่านี้จะยอมให้นำเข้าข้อมูลจากแหล่งภายนอก และส่งผลจากการคำนวณตัวดำเนินการออกไป
หน่วยประมวลผลของคอมพิวเตอร์มีหน้าที่ดำเนินการกับคำสั่งต่างๆ ที่คอยสั่งให้อ่าน ประมวล และเก็บข้อมูลไว้ คำสั่งต่างๆ ที่มีเงื่อนไขจะแปลงชุดคำสั่งให้ระบบและสิ่งแวดล้อมรอบๆ เป็นฟังก์ชันที่สถานะปัจจุบัน
คอมพิวเตอร์อิเล็กทรอนิกส์เครื่องแรกถูกพัฒนาขึ้นในช่วงกลางคริสต์ศตวรรษที่ 20 (ค.ศ. 1940 – ค.ศ. 1945) แรกเริ่มนั้น คอมพิวเตอร์มีขนาดเท่ากับห้องขนาดใหญ่ ซึ่งใช้พลังงานมากเท่ากับเครื่องคอมพิวเตอร์ส่วนบุคคล (พีซี) สมัยใหม่หลายร้อยเครื่องรวมกัน[4]
คอมพิวเตอร์ในสมัยใหม่นี้ผลิตขึ้นโดยใช้วงจรรวม หรือวงจรไอซี (Integrated circuit)โดยมีความจุมากกว่าสมัยก่อนล้านถึงพันล้านเท่า และขนาดของตัวเครื่องใช้พื้นที่เพียงเศษส่วนเล็กน้อยเท่านั้น คอมพิวเตอร์อย่างง่ายมีขนาดเล็กพอที่จะถูกบรรจุไว้ในอุปกรณ์โทรศัพท์มือถือ และคอมพิวเตอร์มือถือนี้ใช้พลังงานจากแบตเตอรี่ขนาดเล็ก และหากจะมีคนพูดถึงคำว่า "คอมพิวเตอร์" มักจะหมายถึงคอมพิวเตอร์ส่วนบุคคลซึ่งถือเป็นสัญลักษณ์ของยุคสารสนเทศ อย่างไรก็ดี ยังมีคอมพิวเตอร์ชนิดฝังอีกมากมายที่พบได้ตั้งแต่ในเครื่องเล่นเอ็มพีสามจนถึงเครื่องบินขับไล่ และของเล่นชนิดต่างๆ จนถึงหุ่นยนต์อุตสาหกรรม
ประวัติของการคำนวณโดยใช้คอมพิวเตอร์
มีการบันทึกไว้ว่า ครั้งแรกที่มีการใช้คำว่า "คอมพิวเตอร์" คือเมื่อ ค.ศ. 1613 ซึ่งหมายถึงบุคคลที่ทำหน้าที่คาดการณ์ หรือคิดคำนวณ และมีความหมายเช่นนี้เรื่อยมาจนถึงกลางคริสต์ศตวรรษที่ 20 และตั้งแต่ปลายคริสต์ศตวรรษที่ 19 มา ความหมายของคำว่าคอมพิวเตอร์นี้เริ่มมีใช้กับเครื่องจักรที่ทำหน้าที่คิดคำนวณมากขึ้น[5]
คอมพิวเตอร์ยุคแรกที่มีฟังก์ชันจำกัด
ประวัติของคอมพิวเตอร์สมัยใหม่นั้นเริ่มต้นจากเทคโนโลยีสองชนิดที่แตกต่างกัน ได้แก่ การคำนวณโดยอัตโนมัติ กับการคำนวณที่สามารถโปรแกรมได้ (หมายถึงสร้างวิธีการทำงานและปรับแต่งได้) แต่ระบุแน่ชัดไม่ได้ว่าเทคโนโลยีชนิดใดเกิดขึ้นก่อน ส่วนหนึ่งเป็นเพราะการคำนวณแต่ละชนิดนั้นไม่มีความสอดคล้องกัน อุปกรณ์บางชนิดก็มีความสำคัญที่จะเอ่ยถึง อย่างเช่นเครื่องมือเชิงกลเพื่อการคำนวณบางชนิดที่ประสบความสำเร็จและยังใช้กันอยู่หลายศตวรรษก่อนที่จะมีเครื่องคิดเลขอิเล็กทรอนิกส์ อาทิลูกคิดของชาวสุเมเรียนที่ถูกออกแบบขึ้นราว 2,500 ปีก่อนคริสตกาล[6] ชนะการแข่งขันความเร็วในการคำนวณต่อเครื่องคำนวณตั้งโต๊ะเมื่อ ค.ศ. 1946 ที่ประเทศญี่ปุ่น[7] ต่อมาในคริสต์ทศวรรษ 1620 มีการประดิษฐ์สไลด์รูล ซึ่งถูกนำขึ้นยานอวกาศในภารกิจของโครงการอะพอลโลถึง 5 ครั้ง รวมถึงเมื่อครั้งที่สำรวจดวงจันทร์ด้วย[8] นอกจากนี้ยังมี เครื่องทำนายตำแหน่งดาวฤกษ์ (Astrolabe) และ กลไกอันติคือเธรา ซึ่งเป็นเครื่องคำนวณ (คอมพิวเตอร์) เกี่ยวกับดาราศาสตร์ยุคโบราณที่ชาวกรีกเป็นผู้สร้างขึ้นราว 80 ปีก่อนคริสตกาล[9] ที่มาของระบบการสั่งการโปรแกรมเกิดขึ้นเมื่อ ฮีโรแห่งอเล็กซานเดรีย (c.10-70 AD) นักคณิตศาสตร์ชาวกรีกสร้างโรงละครที่ประกอบด้วยเครื่องจักร ใช้แสดงละครความยาว 10 นาที และทำงานโดยมีกลไกเชือกและอิฐบล็อกทรงกระบอกที่ซับซ้อน ซึ่งสามารถตัดสินใจเลือกได้ว่าจะชิ้นส่วนกลไกใดใช้ในการแสดงฉากใดและเมื่อใด[10]
ราวๆ ปลายศตวรรษที่ 10 สมเด็จพระสันตะปาปาซิลเวสเตอร์ที่ 2 นักบวชชาวฝรั่งเศส ได้นำลิ้นชักบรรจุอุปกรณ์ชนิดหนึ่งที่จะตอบคำถามได้ว่าใช่ หรือ ไม่ใช่ เมื่อถูกถามคำถาม (ด้วยเลขฐานสอง)[11] ซึ่งชาวมัวร์ประดิษฐ์ไว้กลับมาจากประเทศสเปน ในศตวรรษที่ 13 นักบุญอัลแบร์ตุส มาญุส และโรเจอร์ เบคอน นักปราชญ์ชาวอังกฤษ ได้สร้างหุ่นยนต์แอนดรอยด์ (android) พูดได้ โดยไม่ได้พัฒนาใดๆ ต่ออีก (นักบุญอัลแบร์ตุส มาญุส บ่นออกมาว่าเขาเสียเวลาเปล่าไป 40 ปีในชีวิต เมื่อนักบุญโทมัส อควีนาสตกใจกับเครื่องนี้และได้ทำลายมันเสีย) [12]
ในปี ค.ศ. 1642 แห่งยุคฟื้นฟูศิลปวิทยา มีการประดิษฐ์เครื่องคำนวณของปาสคาลซึ่งเป็นเครื่องคำนวณตัวเลขเชิงกล[13] เป็นอุปกรณ์ที่จะสามารถคำนวณโดยใช้ตัวดำเนินการทางคณิตศาสตร์โดยไม่ต้องพึ่งสติปัญญามนุษย์[14] เครื่องคำนวณเชิงกลนี้ยังถือเป็นรากฐานของการพัฒนาคอมพิวเตอร์ในสองทาง แรกเริ่มนั้น ความพยายามที่จะพัฒนาเครื่องคำนวณที่มีสมรรถภาพสูงและยืดหยุ่น[15] ซึ่งทฤษฎีนี้ถูกสร้างโดยชาร์ลส แบบเบจ[16][17] และได้รับการพัฒนาในเวลาต่อมา[18] นำไปสู่การพัฒนาเมนเฟรมคอมพิวเตอร์ (คอมพิวเตอร์ขนาดใหญ่) ขึ้นในคริสต์ทศวรรษ 1960 และในขณะเดียวกัน อินเทลก็สามารถประดิษฐ์ ไมโครโพรเซสเซอร์ ซึ่งถือเป็นจุดกำเนิดการเปลี่ยนแปลงครั้งใหญ่ของคอมพิวเตอร์ส่วนบุคคล และเป็นหัวใจสำคัญของระบบคอมพิวเตอร์หากไม่คำนึงถึงขนาดและวัตถุประสงค์[19] ขึ้นได้โดยบังเอิญ[20] ระหว่างการพัฒนาเครื่องคำนวณอิเล็กทรอนิกส์ บิซิคอม ที่พัฒนาสืบต่อจากเครื่องคำนวณเชิงกลโดยตรง
ประเภทของคอมพิวเตอร์
ในปัจจุบัน คอมพิวเตอร์ได้ใช้วงจรเบ็ดเสร็จขนาดใหญ่มาก (very large scale integrated circuit) ซึ่งสามารถบรรจุทรานซิสเตอร์ได้มากกว่าสิบล้านตัว เราสามารถแบ่งคอมพิวเตอร์ในรุ่นปัจจุบันออกเป็น 4 ประเภทดังต่อไปนี้
ซูเปอร์คอมพิวเตอร์ (supercomputer)
ซูเปอร์คอมพิวเตอร์ ถือได้ว่าเป็นคอมพิวเตอร์ที่มีความเร็วมาก และมีประสิทธิภาพสูงสุดเมื่อเปรียบเทียบกับคอมพิวเตอร์ชนิดอื่น ๆ เครื่องซูเปอร์คอมพิวเตอร์มีราคาแพงมาก มีขนาดใหญ่ สามารถคำนวณทางคณิตศาสตร์ได้หลายแสนล้านครั้งต่อวินาที และได้รับการออกแบบ เพื่อให้ใช้แก้ปัญหาขนาดใหญ่มากทางวิทยาศาสตร์และทางวิศวกรรมศาสตร์ได้อย่างรวดเร็ว เช่น การพยากรณ์อากาศล่วงหน้าเป็นเวลาหลายวัน การศึกษาผลกระทบของมลพิษกับสภาวะแวดล้อมซึ่งหากใช้คอมพิวเตอร์ชนิดอื่นๆ แก้ไขปัญหาประเภทนี้ อาจจะต้องใช้เวลาในการคำนวณหลายปีกว่าจะเสร็จสิ้น ในขณะที่ซูเปอร์คอมพิวเตอร์สามารถแก้ไขปัญหาได้ภายในเวลาไม่กี่ชั่วโมงเท่านั้น เนื่องจากการแก้ปัญหาใหญ่ ๆ จะต้องใช้หน่วยความจำสูง ดังนั้น ซูเปอร์คอมพิวเตอร์จึงมีหน่วยความจำที่ใหญ่มาก ซูเปอร์คอมพิวเตอร์มีหลายประเภท ตั้งแต่รุ่นที่มีหน่วยประมวลผล (processing unit) 1 หน่วย จนถึงรุ่นที่มีหน่วยประมวลผลหลายหมื่นหน่วยซึ่งสามารถทำงานหลายอย่างได้พร้อม ๆ กัน
เมนเฟรมคอมพิวเตอร์ (mainframe computer)
เมนเฟรมคอมพิวเตอร์ มีสมรรถภาพที่ต่ำกว่าซูเปอร์คอมพิวเตอร์มาก แต่ยังมีความเร็วสูง และมีประสิทธิภาพสูงกว่ามินิคอมพิวเตอร์หรือไมโครคอมพิวเตอร์ เมนเฟรมคอมพิวเตอร์สามารถให้บริการผู้ใช้จำนวนหลายร้อยคนพร้อม ๆ กัน ฉะนั้น จึงสามารถใช้โปรแกรมจำนวนนับร้อยแบบในเวลาเดียวกันได้ โดยเฉพาะถ้าต่อเครื่องเข้าเครือข่ายคอมพิวเตอร์ ผู้ใช้สามารถใช้ได้จากทั่วโลก ปัจจุบัน องค์กรใหญ่ๆ เช่น ธนาคาร จะใช้คอมพิวเตอร์ประเภทนี้ในการทำบัญชีลูกค้า หรือการให้บริการจากเครื่องฝากและถอนเงินแบบอัตโนมัติ (automatic teller machine) เนื่องจากเครื่องเมนเฟรมคอมพิวเตอร์ได้ถูกใช้งานมากในการบริการผู้ใช้พร้อม ๆ กัน เมนเฟรมคอมพิวเตอร์จึงต้องมีหน่วยความจำที่ใหญ่มาก
มินิคอมพิวเตอร์ (minicomputer)
มินิคอมพิวเตอร์ คือ เมนเฟรมคอมพิวเตอร์ขนาดเล็ก ๆ ซึ่งสามารถบริการผู้ใช้งานได้หลายคนพร้อม ๆ กัน แต่จะไม่มีสมรรถภาพเพียงพอที่จะบริการผู้ใช้ในจำนวนที่เทียบเท่าเมนเฟรมคอมพิวเตอร์ได้ จึงทำให้มินิคอมพิวเตอร์เหมาะสำหรับองค์กรขนาดกลาง หรือสำหรับแผนกหนึ่งหรือสาขาหนึ่งขององค์กรขนาดใหญ่เท่านั้น
ไมโครคอมพิวเตอร์ (microcomputer) หรือ พีซี (personal computer หรือ PC)
ไมโครคอมพิวเตอร์ คือ คอมพิวเตอร์ขนาดเล็กแบบขนาดตั้งโต๊ะ (desktop computer) หรือขนาดเล็กกว่านั้น เช่น ขนาดสมุดบันทึก (notebook computer) และขนาดฝ่ามือ (palmtop computer) ไมโครคอมพิวเตอร์ได้เริ่มมีขึ้นในปีพ.ศ. 2518 ถึงแม้ว่าในระยะหลัง เครื่องชนิดนี้จะมีประสิทธิภาพที่สูง แต่เนื่องจากมีราคาไม่แพงและมีขนาดกระทัดรัด ไมโครคอมพิวเตอร์จึงยังเหมาะสำหรับใช้ส่วนตัว ไมโครคอมพิวเตอร์ได้ถูกออกแบบสำหรับใช้ที่บ้าน โรงเรียน และสำนักงานสำหรับที่บ้าน เราสามารถใช้ไมโครคอมพิวเตอร์ในการทำงบประมาณรายรับรายจ่ายของครอบครัวช่วยทำการบ้านของลูกๆ การค้นคว้าข้อมูลและข่าวสาร การสื่อสารแบบอิเล็กทรอนิกส์ (electronic mail หรือ E - mail) หรือโทรศัพท์ทางอินเทอร์เน็ต (internet phone) ในการติดต่อทั้งในและนอกประเทศ หรือแม้กระทั่งทางบันเทิง เช่น การเล่นเกมบนเครื่องไมโครคอมพิวเตอร์ สำหรับที่โรงเรียน เราสามารถใช้ไมโครคอมพิวเตอร์ในการช่วยสอนนักเรียนในการค้นคว้าข้อมูลจากทั่วโลกสำหรับที่สำนักงาน เราสามารถใช้ไมโครคอมพิวเตอร์ในการช่วยพิมพ์จดหมายและข้อมูลอื่นๆ เก็บและค้นข้อมูล วิเคราะห์และทำนายยอดซื้อขายล่วงหน้า
โน้ตบุ๊ค (notebook or laptop)
โน้ตบุ๊ค คือ คอมพิวเตอร์ที่มีขนาดเล็กกว่าไมโครคอมพิวเตอร์ ถูกออกแบบไว้เพื่อนำติดตัวไปใช้ตามที่ต่างๆ มีขนาดเล็ก และน้ำหนักเบา ในปัจจุบันมีขนาดพอๆกับสมุดที่ทำด้วยกระดาษ
เน็ตบุ๊ค (netbook or laptop)
เน็ตบุ๊ค คือ คอมพิวเตอร์ที่มีขนาดเล็กกว่าไมโครคอมพิวเตอร์และเล็กกว่าโน้ตบุ๊ค ถูกออกแบบไว้เพื่อนำติดตัวไปใช้ตามที่ต่างๆ มีขนาดเล็ก และน้ำหนักเบา
แท็บเล็ต คอมพิวเตอร์ (tablet computer)
แท็บเล็ต คอมพิวเตอร์ หรือเรียกสั้น ๆ ว่า แท็บเล็ต คือเครื่องคอมพิวเตอร์ที่สามารถใช้ในขณะเคลื่อนที่ได้ ขนาดกลางและใช้หน้าจอสัมผัสในการทำงานเป็นอันดับแรก มีคีย์บอร์ดเสมือนจริงหรือปากกาดิจิตอลในการใช้งานแทนที่แป้นพิมพ์คีย์บอร์ด และมีความหมายครอบคลุมถึงโน๊คบุ๊คแบบ convertible ที่มีหน้าจอแบบสัมผัสและมีแป้นพิมพ์คีย์บอร์ดติดมาด้วยไม่ว่าจะเป็นแบบหมุนหรือแบบสไลด์ก็ตาม [21]
ตัวอย่างประโยชน์ของคอมพิวเตอร์
คอมพิวเตอร์มีประโยชน์กับเรามากมาย เช่น
1.             การใช้งานภาครัฐ งานทะเบียนราษฎร์ของรัฐบาล เช่น การแจ้งเกิด ตาย ย้ายที่อยู่ การทำบัตรประจำตัวประชาชน งานภาษี เช่น ยื่นแบบประเมินภาษีภาษีผ่านอินเทอร์เน็ต เก็บทะเบียนประวัติผู้เสียภาษี ตรวจสอบการเสียภาษี
2.             งานสายการบิน การสำรองที่นั่งผู้โดยสาร การลดงานเอกสาร
3.             ทางด้านการศึกษา สื่อคอมพิวเตอร์ช่วยสอน การเรียนออนไลน์ให้กับผู้เรียนที่อยู่ห่างไกล
4.             ธุรกิจการนำเข้าสินค้าและส่งออก การทำธุรกิจแบบพาณิชย์อิเล็กทรอนิกส์
5.             ธุรกิจธนาคาร ช่วยด้านงานข้อมูลธนาคาร รับ-จ่ายเงิน เก็บประวัติลูกค้า ธนาคารอิเล็กทรอนิกส์ การทำธุรกรรมผ่านโทรศัพท์มือถือ
6.             วิทยาศาสตร์และการแพทย์ การเก็บข้อมูลเกี่ยวกับประวัติการรักษาของคนไข้ วิจัย คำนวณ และ การจำลองแบบ
7.             งานสถาปนิก ช่วยออกแบบ เขียนแบบ หรือทำแบบจำลองสามมิติ
8.             งานภาพยนตร์ การ์ตูน แอนิเมชัน ช่วยสร้างตัวการ์ตูนเคลื่อนไหว ออกแบบตัวการ์ตูน จำลองตัวการ์ตูนสามมิติ การตัดต่อภาพยนตร์
9.             งานด้านสถิติ ช่วยเก็บบันทึกข้อมูล วิเคราะห์ จำลองแบบข้อมูล และการเผยแพร่ข้อมูล
10.      ด้านนันทนาการ ช่วยให้ความบันเทิง ดูหนัง ฟังเพลง ร้องคาราโอเกะ เล่นเกม
ความหมายและความเป็นมา
เมื่อพิจารณาศัพท์คำว่า คอมพิวเตอร์ ถ้าแปลกันตรงตัวตามคำภาษาอังกฤษ จะหมายถึงเครื่องคำนวณ ดังนั้นถ้ากล่าวอย่างกว้าง ๆ เครื่องคำนวณที่มีส่วนประกอบเป็นเครื่องกลไกหรือเครื่องไฟฟ้า ต่างก็จัดเป็นคอมพิวเตอร์ได้ทั้งสิ้น ลูกคิดที่เคยใช้กันในร้านค้า ไม้บรรทัด คำนวณ (slide rule) ซึ่งถือเป็นเครื่องมือประจำตัววิศวกรในยุคยี่สิบปีก่อน หรือเครื่องคิดเลข ล้วนเป็นคอมพิวเตอร์ได้ทั้งหมด
ในปัจจุบันความหมายของคอมพิวเตอร์จะระบุเฉพาะเจาะจง หมายถึงเครื่องคำนวณอิเล็กทรอนิกส์ที่สามารถทำงานคำนวณผลและเปรียบเทียบค่าตามชุดคำสั่งด้วยความเร็วสูงอย่างต่อเนื่องและอัตโนมัติ พจนานุกรมฉบับราชบัณฑิตยสถาน พ.ศ. 2525 ได้ให้คำจำกัดความของคอมพิวเตอร์ไว้ค่อนข้างกะทัดรัดว่า เครื่องอิเล็กทรอนิกส์แบบอัตโนมัติ ทำหน้าที่เสมือนสมองกล ใช้สำหรับแก้ปัญหาต่าง ๆ ทั้งที่ง่ายและซับซ้อน โดยวิธีทางคณิตศาสตร์
การจำแนกคอมพิวเตอร์ตามลักษณะวิธีการทำงานภายในเครื่องคอมพิวเตอร์อาจแบ่งได้เป็นสองประเภทใหญ่ ๆ คือ
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/bluepin.gifคำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/index_h1.gif
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/bluepin.gifคำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/index_h2.gif
แอนะล็อกคอมพิวเตอร์ (analog computer) เป็นเครื่องคำนวณอิเล็กทรอนิกส์ที่ไม่ได้ใช้ค่าตัวเลขเป็นหลักของการคำนวณ แต่จะใช้ค่าระดับแรงดันไฟฟ้าแทน ไม้บรรทัดคำนวณ อาจถือเป็นตัวอย่างหนึ่งของแอนะล็อกคอมพิวเตอร์ ที่ใช้ค่าตัวเลขตามแนวความยาวไม้บรรทัดเป็นหลักของการคำนวณ โดยไม้บรรทัดคำนวณจะมีขีดตัวเลขกำกับอยู่ เมื่อไม้บรรทัดหลายอันมรประกบรวมกัน การคำนวณผล เช่น การคูณ จะเป็นการเลื่อนไม้บรรทัดหนึ่งไปตรงตามตัวเลขของตัวตั้งและตัวคูณของขีดตัวเลขชุดหนึ่ง แล้วไปอ่านผลคูณของขีดตัวเลขอีกชุดหนึ่งแอนะล็อกคอมพิวเตอร์แบบอิเล็กทรอนิกส์จะใช้หลักการทำนองเดียวกัน โดยแรงดันไฟฟ้าจะแทนขีดตัวเลขตามแนวยาวของไม้บรรทัด
แอนะล็อกคอมพิวเตอร์จะมีลักษณะเป็นวงจรอิเล็กทรอนิกส์ที่แยกส่วนทำหน้าที่เป็นตัวกระทำและเป็นฟังก์ชันทางคณิตศาสตร์ จึงเหมาะสำหรับงานคำนวณทางวิทยาศาสตร์และวิศวกรรมที่อยู่ในรูปของสมการคณิตศาสตร์ เช่น การจำลองการบิน การศึกษาการสั่งสะเทือนของตึกเนื่องจากแผ่นดินไหว ข้อมูลตัวแปรนำเข้าอาจเป็นอุณหภูมิความเร็วหรือความดันอากาศ ซึ่งจะต้องแปลงให้เป็นค่าแรงดันไฟฟ้า เพื่อนำเข้าแอนะล็อกคอมพิวเตอร์ผลลัพธ์ที่ได้ออกมาเป็นแรงดันไฟฟ้าแปรกับเวลาซึ่งต้องแปลงกลับไปเป็นค่าของตัวแปรที่กำลังศึกษา
ในปัจจุบันไม่ค่อยพบเห็นแอนะล็อกคอมพิวเตอร์เท่าไรนักเพราะผลการคำนวณมีความละเอียดน้อย ทำให้มีขีดจำกัดใช้ได้กับงานเฉพาะบางอย่างเท่านั้น

 
ดิจิทัลคอมพิวเตอร์ (digital computer) คอมพิวเตอร์ที่พบเห็นทั่วไปในปัจจุบัน จัดเป็นดิจิทัลคอมพิวเตอร์แทบทั้งหมด ดิจิทัลคอมพิวเตอร์เป็นเครื่องคำนวณอิเล็กทรอนิกส์ที่ใช้งานเกี่ยวกับตัวเลข มีหลักการคำนวณที่ไม่ใช่แบบไม้บรรทัดคำนวณ แต่เป็นแบบลูกคิด โดยแต่และหลักของลูกคิดคือ หลักหน่วย หลักร้อย และสูงขึ้นไปเรื่อย ๆ เป็นระบบเลขฐานสินที่แทนตัวเลขจากศูนย์ถ้าเก้าไปสิบตัวตามระบบตัวเลขที่ใช้ในชีวิตประจำวัน
ค่าตัวเลขของการคำนวณในดิจิทัลคอมพิวเตอร์จะแสดงเป็นหลักเช่นเดียวกัน แต่จะเป็นระบบเลขฐานสองที่มีสัญลักษณ์ตัวเลขเพียงสองตัว คือเลขศูนย์กับเลขหนึ่งเท่านั้น โดยสัญลักษณ์ตัวเลขทั้งสองตัวนี้ จะแทนลักษณะการทำงานภายในซึ่งเป็นสัญญาณไฟฟ้าที่ต่างกัน การคำนวณภายในดิจิทัลคอมพิวเตอร์จะเป็นการประมวลผลด้วยระบบเลขฐานสองทั้งหมด ดังนั้นเลขฐานสิบที่เราใช้และคุ้นเคยจะถูกแปลงไปเป็นระบบเลขฐานสองเพื่อการคำนวณภายในคอมพิวเตอร์ ผลลัพธ์ที่ได้ก็ยังเป็นเลขฐานสองอยู่ ซึ่งคอมพิวเตอร์จะแปลงเป็นเลขฐานสิบเพื่อแสดงผลให้ผู้ใช้เข้าใจได้ง่าย


คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/index01_h1.gif
อยู่ระหว่างปี พ.ศ. 2488 ถึง พ.ศ. 2501 เป็นคอมพิวเตอร์ที่ใช้หลอดสุญญากาศซึ่งใช้กำลังไฟฟ้าสูง จึงมีปัญหาเรื่องความร้อนและไส้หลอดขาดบ่อย ถึงแม้จะมีระบบระบายความร้อนที่ดีมาก การสั่งงานใช้ภาษาเครื่องซึ่งเป็นรหัสตัวเลขที่ยุ่งยากซับซ้อน เครื่องคอมพิวเตอร์ของยุคนี้มีขนาดใหญ่โต เช่น มาร์ค วัน (MARK I), อีนิแอค (ENIAC), ยูนิแวค (UNIVAC)
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/index01_h2.gif
คอมพิวเตอร์ยุคที่สอง อยู่ระหว่างปี พ.ศ. 2502 ถึง พ.ศ. 2506 เป็นคอมพิวเตอร์ที่ใช้ทรานซิสเตอร์ โดยมีแกนเฟอร์ไรท์เป็นหน่วยความจำ มีอุปกรณ์เก็บข้อมูลสำรองในรูปของสื่อบันทึกแม่เหล็ก เช่น จานแม่เหล็ก ส่วนทางด้านซอฟต์แวร์ก็มีการพัฒนาดีขึ้น โดยสามารถเขียนโปรแกรมด้วยภาษาระดับสูงซึ่งเป็นภาษาที่เขียนเป็นประโยคที่คนสามารถเข้าใจได้ เช่น ภาษาฟอร์แทน ภาษาโคบอล เป็นต้น ภาษาระดับสูงนี้ได้มีการพัฒนาและใช้งานมาจนถึงปัจจุบัน
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/index01_h3.gif
คอมพิวเตอร์ยุคที่สาม อยู่ระหย่างปี พ.ศ. 2507 ถึง พ.ศ. 2512 เป็นคอมพิวเตอร์ที่ใช้วงจรรวม (Integrated Circuit : IC) โดยวงจรรวมแต่ละตัวจะมีทรานซิสเตอร์บรรจุอยู่ภายในมากมายทำให้เครื่องคอมพิวเตอร์จะออกแบบซับซ้อนมากขึ้น และสามารถสร้างเป็นโปรแกรมย่อย ๆ ในการกำหนดชุดคำสั่งต่าง ๆ ทางด้านซอฟต์แวร์ก็มีระบบควบคุมที่มีความสามารถสูงทั้งในรูประบบแบ่งเวลาการทำงานให้กับงานหลาย ๆ อย่าง

คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/index01_h4.gif
คอมพิวเตอร์ยุคที่สี่ ตั้งแต่ปี พ.ศ. 2513 จนถึงปัจจุบัน เป็นยุคของคอมพิวเตอร์ที่ใช้วงจรรวมความจุสูงมาก(Very Large Scale Integration : VLSI) เช่น ไมโครโพรเซสเซอร์ที่บรรจุทรานซิสเตอร์นับหมื่นนับแสนตัว ทำให้ขนาดเครื่องคอมพิวเตอร์มีขนาดเล็กลงสามารถตั้งบนโต๊ะในสำนักงานหรือพกพาเหมือนกระเป๋าหิ้วไปในที่ต่าง ๆ ได้ ขณะเดียวกันระบบซอฟต์แวร์ก็ได้พัฒนาขีดความสามารถสูงขึ้นมาก มีโปรแกรมสำเร็จให้เลือกใช้กันมากทำให้เกิดความสะดวกในการใช้งานอย่างกว้างขวาง

คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/index01_h5.gif
คอมพิวเตอร์ยุคที่ห้า เป็นคอมพิวเตอร์ที่มนุษย์พยายามนำมาเพื่อช่วยในการตัดสินใจและแก้ปัญหาให้ดียิ่งขึ้น โดยจะมีการเก็บความรอบรู้ต่าง ๆ เข้าไว้ในเครื่อง สามารถเรียกค้นและดึงความรู้ที่สะสมไว้มาใช้งานให้เป็นประโยชน์ คอมพิวเตอร์ยุคนี้เป็นผลจากวิชาการด้านปัญญาประดิษฐ์ (Artificial Intelligence : AI) ประเทศต่างๆ ทั่วโลกไม่ว่าจะเป็นสหรัฐอเมริกา ญี่ปุ่น และประเทศในทวีปยุโรปกำลังสนใจค้นคว้าและพัฒนาทางด้านนี้กันอย่างจริงจัง
กำเนิดเครื่องคอมพิวเตอร์

มนุษย์พยายามสร้างเครื่องมือเพื่อช่วยการคำนวณมาตั้งแต่สมัยโบราณแล้ว จึงได้พยายามพัฒนาเครื่องมือต่าง ๆ ให้สามารถใช้งานได้ง่ายเพิ่มขึ้นตามลำดับ ซึ่งพอที่จะลำดับเครื่องมือที่ถูกประดิษฐ์ขึ้นมามีดังนี้
·         ในระยะ 5,000 ปี ที่ผ่านมา มนุษย์เริ่มรู้จักการใช้นิ้วมือและนิ้วเท้าของตนเพื่อช่วยในการคำนวณ และพัฒนาเป็นอุปกรณ์อื่น ๆ เช่น ลูกหิน
·         ประมาณ 2,600 ปีก่อนคริสตกาล ชาวจีนได้ประดิษฐ์เครื่องมือเพื่อใช้ในการคำนวณขึ้นมาชนิดหนึ่ง เรียกว่า ลูกคิด (Abacus) ซึ่งถือได้ว่าเป็นอุปกรณ์ช่วยการคำนวณที่เก่าแก่ที่สุดในโลกและยังคงใช้งานมาจนถึงปัจจุบัน
·         พ.ศ. 2158 นักคณิตศาสตร์ชาวสก็อตแลนด์ชื่อ John Napier ได้ประดิษฐ์อุปกรณ์ที่ใช้ช่วยในการคำนวณขึ้นมาเรียกว่า Napier's Bones เป็นอุปกรณ์ที่มีลักษณะคล้ายกับตารางสูตรคูณในปัจจุบัน
·         พ.ศ. 2185 นักคณิตศาสตร์ชาวฝรั่งเศส ชื่อ Blaise Pascal ได้ออกแบบเครื่องมือช่วยในการคำนวณโดยใช้หลักการหมุนของฟันเฟืองหนึ่งอันถูกหมุนครบ 1 รอบ ฟันเฟืองอีกอันหนึ่งทางด้านซ้ายจะถูกหมุนไปด้วยในเศษ 1 ส่วน 10 รอบ เช่นเดียวกับการทดเลขสำหรับผลการคำนวณจะดูได้ที่ช่องบน และได้ถูกเผยแพร่ออกสู่สาธารณชนเมื่อ พ.ศ. 2188 แต่ไม่ประสบผลสำเร็จเท่าที่ควร เครื่องมือนี้สามารถใช้ได้ดีในการคำนวณบวกและลบ เท่านั้น ส่วนการคูณและหารยังไม่ดีเท่าไร

 
·         ในปี 2216 นักปรัชญาชาวเยอรมันชื่อ Gottfried Wilhelm Baronvon Leibnitz ได้ปรับปรุงเครื่องคำนวณของปาสคาล ซึ่งใช้การบวกซ้ำ ๆ กันแทนการคูณเลข จึงทำให้สามารถทำการคูณและหารได้โดยตรง ซึ่งอาศัยการหมุนวงล้อของเครื่องเอง เครื่องคิดเลขที่ไลบนิซ สร้างขึ้นเรียกว่า Leibniz's Stepped และยังค้นพบเลขฐานสอง (Binary Number) คือ เลข 0 และเลข 1 ซึ่งเป็นระบบเลขที่เหมาะในการคำนวณ
·         พ.ศ. 2344 นักประดิษฐ์ชาวฝรั่งเศสชื่อ Joseph Marie Jacquard ได้พยายามพัฒนาเครืองทอผ้าโดยใช้บัตรเจาะรูในการบันทึกคำสั่งควบคุมเครื่องทอผ้าให้ทำตามแบบที่กำหนดไว้ ซึ่งเป็นแนวทางที่ทำให้เกิดการประดิษฐ์เครื่องเจาะบัตร (Punched Card Machine) ในเวลาต่อมา และถือว่าเป็นเครื่องจักรที่ใช้ชุดคำสั่ง (Program) สั่งทำงานเป็นเครื่องแรก
·         พ.ศ. 2373 Charles Babbage ศาสตราจารย์ทางคณิตศาสตร์แห่งมหาวิทยาลัยแคมบริดจ์ของอังกฤษ ได้สร้างเครื่องหาผลต่าง (Difference Engine) ซึ่งเป็นเครื่องที่ใช้คำนวณและพิมพ์ตารางทางคณิตศาสตร์อย่างอัตโนมัติ แต่ก็ไม่สำเร็จตามแนวคิด ด้วยข้อจำกัดทางด้านวิศวกรรมในสมัยนั้น แต่ได้พัฒนาเครื่องมือหนึ่งเรียกว่า เครื่องวิเคราะห์ (Analytical Engine) เครื่องนี้ประกอบด้วยส่วนสำคัญ 4 ส่วน คือ

1. ส่วนเก็บข้อมูล เป็นส่วนที่ใช้ในการเก็บข้อมูลนำเข้าและผลลัพธ์ที่ได้จากการคำนวณ
2. ส่วนประมวลผล เป็นส่วนที่ใช้ในการประมวลผลทางคณิตศาสตร์
3. ส่วนควบคุม เป็นส่วนที่ใช้ในการเคลื่อนย้ายข้อมูลระหว่างส่วนเก็บข้อมูลและส่วนประมวลผล
4. ส่วนรับข้อมูลเข้าและแสดงผลลัพธ์ เป็นส่วนที่ใช้รับข้อมูลจากภายนอกเครื่องเข้าสู่ส่วนเก็บข้อมูลและแสดงผลลัพธ์ที่ได้จากการคำนวณด้วยเครื่องวิเคราะห์นี้มีลักษณะใกล้เคียงกับส่วนประกอบของระบบคอมพิวเตอร์ในปัจจุบัน จึงทำให้ Charles Babbage ได้รับการยกย่องให้เป็น "บิดาแห่งคอมพิวเตอร์"
 
·         พ.ศ. 2385 สุภาพสตรีชาวอังกฤษชื่อ Lady Augusta Ada Byron ได้ทำการแปลเรื่องราวเกี่ยวกับเครื่อง Analytical Engine และได้เขียนขั้นตอนของคำสั่งวิธีใช้เครื่องนี้ให้ทำการคำนวณที่ยุ่งยากซับซ้อนไว้ในหนังสือ Taylor's Scientific Memories จึงนับได้ว่า ออกุสต้า เป็นโปรแกรมเมอร์คนแรกของโลก และยังค้นพบอีกว่าชุดบัตรเจาะรูที่บรรจุชุดคำสั่งไว้สามารถนำกลับมาทำงานซ้ำใหม่ได้ถ้าต้องการ นั่นคือหลักการทำงานวนซ้ำ หรือที่เรียกว่า Loop เครื่องมือคำนวณที่ถูกพัฒนาขึ้นในศตวรรษที่ 19 นั้น ทำงานกับเลขฐานสิบ (Decimal Number) แต่เมื่อเริ่มต้นของศตวรรษที่ 20 ระบบคอมพิวเตอร์ได้ถูกพัฒนาขึ้นเป็นลำดับ จึงทำให้มีการเปลี่ยนแปลงมาใช้เลขฐานสอง (Binary Number)กับระบบคอมพิวเตอร์ ที่เป็นผลสืบเนื่องมาจากหลักของพีชคณิต
·         พ.ศ. 2397 นักคณิตศาสตร์ชาวอังกฤษ George Boole ได้สร้างระบบพีชคณิตแบบใหม่ เรียกว่า พีชคณิตบูลลีน (Boolean Algebra)ซึ่งมีประโยชน์มากต่อการออกแบบวงจรไฟฟ้าและอิเล็กทรอนิกส์และการออกแบบทางตรรกวิทยาของเครื่องคอมพิวเตอร์ในปัจจุบันด้วย
·         พ.ศ. 2423 Dr. Herman Hollerith นักสถิติชาวอเมริกันได้ประดิษฐ์เครื่องประมวลผลทางสถิติเครื่องแรก ซึ่งใช้กับบัตรเจาะรู ซึ่งได้ถูกนำมาใช้ในงานสำรวจสำมะโนประชากรของสหรัฐอเมริกา เรียกบัตรเจาะรูนี้ว่า บัตรฮอลเลอริท หรือบัตรไอบีเอ็ม เพราะผู้ผลิตคือบริษัท ไอบีเอ็ม
·         พ.ศ. 2480 ศาสตราจารย์ Howard Aiken ได้พัฒนาเครื่องคำนวณตามแนวคิดของแบบเบจ ร่วมกับวิศวกรของบริษัท ไอบีเอ็มได้สำเร็จโดยเครื่องจะทำงานแบบเครื่องจักรกลปนไฟฟ้าและใช้บัตรเจาะรูเป็นสื่อในการนำข้อมูลเข้าสู่เครื่องเพื่อทำการประมวลผล เครื่องมือนี้มีชื่อว่า MARK I หรือมีอีกชื่อหนึ่งว่า IBM Automatic Sequence Controlled Calculator และนับเป็นเครื่องคำนวณแบบอัตโนมัติเครื่องแรกของโลก
·         พ.ศ. 2486 เป็นช่วงสงครามโลกครั้งที่ 2 ศูนย์วิจัยของกองทัพบกสหรัฐอเมริกา ต้องการเครื่องคำนวณหาทิศทางและระยะทางในการส่งขีปนาวุธ ซึ่งถ้าใช้เครื่องคำนวณสมัยนั้นจะต้องใช้เวลาถึง 12 ชม.ต่อการยิง 1 ครั้ง ดังนั้น จึงให้ทุนอุดหนุนแก่ John W. Mauchly และ Persper Eckert สร้างคอมพิวเตอร์อิเล็กทรอนิกส์ขึ้นมา มีชื่อว่า ENIAC (Electronic Numerical Intergrater and Calculator) สำเร็จในปี 2489 โดยนำหลอดสุญญากาศจำนวน 18,000 หลอดมาใช้ในการสร้าง ซึ่งมีข้อดีคือ ทำให้เครื่องมีความเร็วและมีความถูกต้องแม่นยำในการคำนวณมากขึ้น
·         พ.ศ. 2492 Dr. John Von Neumann ได้พบวิธีการเก็บโปรแกรมไว้ในหน่วยความจำของเครื่องได้สำเร็จ เครื่องคอมพิวเตอร์ที่ถุฏพัฒนาขึ้นตามแนวคิดนี้ได้แก่ EDVAC (Electronic Discrete Variable Automatic Computer) และนำมาใช้งานจริงในปี 2494 และในเวลาเดียวกันมหาวิทยาลัยเคมบริดจ์ก็ได้มีการสร้างคอมพิวเตอร์ในลักษณะคล้ายกับเครื่อง EDVAC นี้ และให้ชื่อว่า EDSAC (Electronic Delay Strorage Automatic Calculator) มีลักษณะการทำงานเหมือนกับ EDVAC คือเก็บโปรแกรมไว้ในหน่วยความจำ แต่มีลักษณะพิเศษที่แตกต่างออกไปคือ ใช้เทปแม่เหล็กในการบันทึกข้อมูลต่อมา ศาสตราจารย์แอคเคิทและมอชลี ได้ร่วมมือกันสร้างเครื่องคอมพิวเตอร์อีก ชื่อว่า UNIVAC I (Universal Automatic Calculator) ซึ่งผลิตขึ้นมาเพื่อขายหรือเช่า เป็นเครื่องแรกที่ออกสู่ตลาดซึ่งทำให้คอมพิวเตอร์ขยายตัวออกไปในภาคเอกชน และเริ่มมีการซื้อขายคอมพิวเตอร์เพื่อใช้งานกันอย่างแพร่หลาย และวิวัฒนาการเรื่อยมาจนถึงปัจจุบัน
ชนิดของคอมพิวเตอร์

พัฒนาการทางคอมพิวเตอร์ได้ก้าวหน้าไปอย่างรวดเร็วและต่อเนื่อง จากอดีตเป็นอุปกรณ์อิเล็กทรอนิกส์ที่ใช้หลอดสุญญากาศขนาดใหญ่ ใช้พลังงานไฟฟ้ามาก และอายุการใช้งานต่ำ เปลี่ยนมาใช้ทรานซิสเตอร์ที่ทำจากชินซิลิกอนเล็ก ๆ ใช้พลังงานไฟฟ้าต่ำ และผลิตได้จำนวนมาก ราคาถูก ต่อมาสามารถสร้างทรานซิสเตอร์จำนวนหลายแสนตัวบรรจุบนชิ้นซิลิกอนเล็ก ๆ เป็นวงจรรวมที่เรียกว่า ไมโครชิป (microchip) และใช้ไมโครชิปเป็นชิ้นส่วนหลักที่ประกอบอยู่ในคอมพิวเตอร์ ทำให้ขนาดของคอมพิวเตอร์เล็กลง
ไมโครชิปที่มีขนาดเล็กนี้สามารถทำงานได้หลายหน้าที่ เช่น ทำหน้าที่เป็นหน่วยความจำสำหรับเก็บข้อมูล ทำหน้าที่เป็นหน่วยควบคุมอุปกรณ์รับเข้าและส่งออก หรือทำหน้าที่เป็นหน่วยประมวลผลกลาง ที่เรียกว่า ไมโครโพรเซสเซอร์ ไมโครโพรเซสเซอร์ หมายถึงหน่วยงานหลักในการคิดคำนวณ การบวกลบคูณหาร การเปรียบเทียบ การดำเนินการทางตรรกะ ตลอดจนการสั่งการเคลื่อนข้อมูลจากที่หนึ่งไปยังอีกที่หนึ่ง หน่วยประมวลผลกลางนี้เรียกอีกอย่างว่า ซีพียู (Central Processing Unit : CPU)
การพัฒนาไมโครชิปที่ทำหน้าที่เป็นไมโครโพรเซสเซอร์มีการกระทำอย่างต่อเนื่องทำให้มีคอมพิวเตอร์รุ่นใหม่ ๆ ที่ดีกว่าเกิดขึ้นเสมอ จึงเป็นการยากที่จะจำแนกชนิดของคอมพิวเตอร์ออกมาอย่างชัดเจน เพราะเทคโนโลยีได้พัฒนาอย่างรวดเร็ว ขีดความสามารถของคอมพิวเตอร์ขนาดเล็กอาจมีประสิทธิภาพสูงกว่าคอมพิวเตอร์ขนาดใหญ่ แต่อย่างไรก็ตามพอจะจำแนกชนิดคอมพิวเตอร์ตามสภาพการทำงานของระบบเทคโนโลยีที่ประกอบอยู่และสภาพการใช้งานได้ดังนี้
ไมโครคอมพิวเตอร์ (Microcomputer)

ไมโครคอมพิวเตอร์เป็นเครื่องคอมพิวเตอร์ที่มีขนาดเล็ก บางคนเห็นว่าเป็นเครื่องคอมพิวเตอร์ที่ใช้งานส่วนบุคคล หรือเรียกว่า พีซี (Personal Computer : PC) สามารถใช้เป็นเครื่องต่อเชื่อมในเครือข่าย หรือใช้เป็นเครื่องปลายทาง (terminal) ซึ่งอาจจะทำหน้าที่เป็นเพียงอุปกรณ์รับและแสดงผลสำหรับป้อนข้อมูลและดูผลลัพธ์ โดยดำเนินการการประมวลผลบนเครื่องอื่นในเครือข่าย
อาจจะกล่าวได้ว่าไมโครคอมพิวเตอร์ คือเครื่องคอมพิวเตอร์ที่มีหน่วยประมวลผลกลางเป็นไมโครโพรเซสเซอร์ ใช้งานง่าย ทำงานในลักษณะส่วนบุคคลได้ สามารถแบ่งแยกไมโครคอมพิวเตอร์ตามขนาดของเครื่องได้ดังนี้
คอมพิวเตอร์แบบตั้งโต๊ะ (desktop computer) เป็นไมโครคอมพิวเตอร์ที่มีขนาดเล็กถูกออกแบบมาให้ตั้งบนโต๊ะ มีการแยกชิ้นส่วนประกอบเป็น ซีพียู จอภาพ และแผงแป้งอักขระ
แล็ปท็อปคอมพิวเตอร์ (laptop computer) เป็นไมโครคอมพิวเตอร์ขนาดเล็กที่วางใช้งานบนตักได้ จอภาพที่ใช้เป็นแบบแบนราบชนิดจอภาพผนึกเหลว (Liquid Crystal Display : LCD) น้ำหนักของเครื่องประมาณ 3-8 กิโลกรัม
โน้ตบุ๊คคอมพิวเตอร์ (notebook computer) เป็นไมโครคอมพิวเตอร์ที่มีขนาดและความหนามากกว่าแล็ปท็อป น้ำหนักประมาณ 1.5-3 กิโลกรัม จอภาพแสดงผลเป็นแบบราบชนิดมีทั้งแบบแสดงผลสีเดียว หรือแบบหลายสี โน้ตบุ๊คที่มีขายทั่วไปมีประสิทธิภาพและความสามารถเหมือนกับแล็ปท็อป
ปาล์มท็อปคอมพิวเตอร์ (palmtop computer) เป็นไมโครคอมพิวเตอร์สำหรับทำงานเฉพาะอย่าง เช่นเป็นพจนานุกรม เป็นสมุดจนบันทึกประจำวัน บันทึกการนัดหมายและการเก็บข้อมูลเฉพาะบางอย่างที่สามารถพกพาติดตัวไปมาได้สะดวก

สถานีงานวิศวกรรม (engineering workstation)



ผู้ใช้สถานีงานวิศวกรรมส่วนใหญ่เป็นวิศวกร นักวิทยาศาสตร์ สถาปนิก และนักออกแบบ สถานีงานวิศวกรรมมีจุดเด่นในเรื่องกราฟิก การสร้างรูปภาพและการทำภาพเคลื่อนไหว การเชื่อมโยงสถานีงานวิศวกรรมรวมกันเป็นเครือข่ายทำให้สามารถแลกเปลี่ยนข้อมูลและใช้งานร่วมกันอย่างมีประสิทธิภาพ
บริษัทพัฒนาซอฟต์แวร์หลายบริษัทได้พัฒนาซอฟต์แวร์สำเร็จสำหรับใช้กับสถานีงานวิศวกรรมขึ้น เช่นโปรแกรมการจัดทำต้นฉบับหนังสือ การออกแบบวงจรอิเล็กทรอนิกส์งานจำลองและคำนวณทางวิทยาศาสตร์ งานออกแบบทางด้านวิศวกรรมและการควบคุมเครื่องจักร
การซื้อสถานีงานวิศวกรรมต่างจากการซื้อเครื่องไมโครคอมพิวเตอร์ เพราะไมโครคอมพิวเตอร์ทุกเครื่องสามารถใช้โปรแกรมสำเร็จสำหรับไมโครคอมพิวเตอร์ได้ และมีลักษณะการใช้งานเหมือนกัน ส่วนการซื้อสถานีงานวิศวกรรมนั้นยุ่งยากกว่า สถานีงานวิศวกรรมมีราคาแพงกว่าไมโครคอมพิวเตอร์มาก การใช้งานก็ต้องการบุคลากรที่มีการฝึกหัดมาอย่างดี หรือต้องใช้เวลาเรียนรู้
สถานีงานวิศวกรรมส่วนใหญ่ใช้ระบบปฎิบัติการยูนิกซ์ ประสิทธิภาพของซีพียูของระบบอยู่ในช่วง 50-100 ล้านคำสั่งต่อวินาที (Million Instruction Per Second : MIPS) อย่างไรก็ตามหลักจากที่ใช้ซีพียูแบบริสก์ (Reduced Instruction Set Computer :RISC) ก็สามารถเพิ่มขีดความสามารถเชิงคำนวณของซีพียูสูงขึ้นได้อีก ทำให้สร้างสถานีงานวิศวกรรมให้มีขีดความสามารถเชิงคำนวณได้มากกว่า 100 ล้านคำสั่งต่อวินาที

มินิคอมพิวเตอร์ (mini computer)

มินิคอมพิวเตอร์เป็นเครื่องที่สามารถใช้งานพร้อม ๆ กันได้หลายคน จึงมีเครื่องปลายทางต่อได้ มินิคอมพิวเตอร์เป็นคอมพิวเตอร์ที่มีราคาสูงกว่าสถานีงานวิศวกรรม นำมาใช้สำหรับประมวลผลในงานสารสนเทศขององค์การขนาดกลาง จนถึงองค์การขนาดใหญ่ที่มีการวางระบบเป็นเครือข่ายเพื่อใช้งานร่วมกัน เช่น งานบัญชีและการเงิน งานออกแบบทางวิศวกรรม งานควบคุมการผลิตในโรงงานอุตสาหกรรม
มินิคอมพิวเตอร์เป็นอุปกรณืที่สำคัญในระบบเครือข่ายคอมพิวเตอร์ขององค์การที่เรียกว่าเครื่อให้บริการ (server) มีหน้าที่ให้บริการกับผู้ใช้บริการ (client) เช่น ให้บริการแฟ้มข้อมูล ให้บริการข้อมูล ให้บริการช่วยในการคำนวณ และการสื่อสาร
เมนเฟรมคอมพิวเตอร์ (mainframe computer)

เมนเฟรมคอมพิวเตอร์เป็นเครื่องคอมพิวเตอร์ขนาดใหญ่ที่มีการพัฒนามาตั้งแต่เริ่มแรก เหตุที่เรียกว่า เมนเฟรมคอมพิวเตอร์เพราะตัวเครื่องประกอบด้วยตู้ขนาดใหญ่ที่ภายในตู้มีชิ้นส่วนและอุปกรณ์ต่าง ๆ อยู่เป็นจำนวนมาก แต่อย่างไรก็ตามในปัจจุบันเมนเฟรมคอมพิวเตอร์มีขนาดลดลงมาก
เมนเฟรมเป็นเครื่องคอมพิวเตอร์ที่มีราคาสูงมาก มักอยู่ที่ศูนย์คอมพิวเตอร์หลักขององค์การ และต้องอยู่ในห้องที่มีการควบคุมอุณหภูมิและมีการดูแลรักษาเป็นอย่างดี
บริษัทผู้ผลิตเมนเฟรมได้พัฒนาขีดความสามารถของเครื่องให้สูงขึ้น ข้อเด่นของการใช้เมนเฟรมอยู่ที่งานที่ต้องการให้มีระบบศูนย์กลาง และกระจายการใช้งานไปเป็นจำนวนมาก เช่น ระบบเอทีเอ็มซึ่งเชื่อมต่อกับฐานข้อมูลที่จัดการโดยเครื่องเมนเฟรม อย่างไรก็ตามขนาดของเมนเฟรมและมินิคอมพิวเตอร์ก็ยากที่จะจำแนกจากกันให้เห็นชัด
ปัจจุบันเมนเฟรมได้รับความนิยมน้อยลง ทั้งนี้เพราะคอมพิวเตอร์ขนาดเล็กมีประสิทธิภาพและความสามารถดีขึ้น ราคาถูกลง ขณะเดียวกันระบบเครือข่ายคอมพิวเตอร์ก็ดีขึ้นจนทำให้การใช้งานบนเครือข่ายกระทำได้เหมือนการใช้งานบนเมนเฟรม
ซูเปอร์คอมพิวเตอร์ (super computer)

ซูเปอร์คอมพิวเตอร์เป็นเครื่องคอมพิวเตอร์ที่เหมาะกับงานคำนวณที่ต้องมีการคำนวณตัวเลขจำนวนหลายล้านตัวภายในเวลาอันรวดเร็ว เช่น งานพยากรณ์อากาศ ที่ต้องนำข้อมูลต่าง ๆ เกี่ยวกับอากาศทั้งระดับภาคพื้นดิน และระดับชึ้นบรรยากาศเพื่อดูการเคลื่อนไหวและการเปลี่ยนแปลงของอากาศ งานนี้จำเป็นต้องใช้เครื่องคอมพิวเตอร์ที่มีสมรรถนะสูงมาก นอกจากนี้มีงานอีกเป็นจำนวนมากที่ต้องใช้ซูเปอร์คอมพิวเตอร์ซึ่งมีความเร็วสูง เช่น งานควบคุมขีปนาวุะ งานควบคุมทางอวกาศ งานประมวลผลภาพทางการแพทย์ งานด้านวิทยาศาสตร์ โดยเฉพาะทางด้านเคมี เภสัชวิทยา และงานด้านวิศวกรรมการออกแบบ
ซูเปอร์คอมพิวเตอร์ทำงานได้เร็ว และมีประสิทธิภาพสูงกว่าคอมพิวเตอร์ชนิดอื่น การที่ซูเปอร์คอมพิวเตอร์ทำงานได้เร็ว เพราะมีการพัฒนาให้มีโครงสร้างการคำนวณพิเศษ เช่นการคำนวณแบบขนานที่เรียกว่า เอ็มพีพี (Massively Parallel Processing : MPP) ซึ่งเป็นการคำนวณที่กระทำกับข้อมูลหลาย ๆ ตัวในเวลาเดียวกัน

เทคโนโลยีการนำข้อมูลเข้าคอมพิวเตอร์

        สำหรับงานบางประเภทที่ต้องมีการป้อนข้อมูลเป็นประจำอย่างต่อเนื่อง เช่น สำนักงานทะเบียนราษฎร   หรือสำนักงานประจำสายการบิน งานเกี่ยวกับการป้อนข้อมูลเข้าระบบ  computer  มีความจำเป็นมาก และ เป็น
งานที่เสียเวลาและแรงงาน งานป้อนข้อมูลจึงจำเป็นต้องอาศัยเทคโนโลยีสมัยใหม่เข้าช่วย
        ทางด้านอุปกรณ์ป้อนข้อมูลเข้า Input แบ่งได้เป็น 5 กลุ่มใหญ่ๆ ซึ่งไม่รวมถึง input ด้วยระบบสื่อสารข้อมูล
        กลุ่มที่ 1   ได้แก่ กลุ่มที่ป้อนด้วยตัวอักษร นั่นนั่นคือ แป้นพิมพ์ หรือ keyboard ซึ่งจะอ่านตัวอักษรและตัวเลขจากแป้นพิมพ์ตามที่ผู้พิมพ์กด เข้าไปเก็บไว้ใน Computer การป้อนข้อมูลเข้าแบบตัวอักษรอีกแบบหนึ่ง คือประเภทบัตรเจาะรู เครื่องอ่านบัตรเจาะรูจะอ่านเป็นรหัส อักขระตามที่ผู้ใช้เจาะไว้    แต่ปัจจุบันบัตรเจาะรูไม่ได้ใช้กันแล้ว
  กลุ่มที่ 2 ได้แก่ กลุ่มที่ป้อนข้อมูลด้วยอุปกรณ์ชี้ตำแหน่ง การป้อนแบบนี้มีลักษณะเป็นการป้อนแบบ Graphic อุปกรณ์ที่เด่นชัดคือ Mouse ปากกาแสง Joystick Trackball
        กลุ่มที่ 3 เป็นการอ่านข้อมูลเป็นรูปภาพเข้ามาเก็บใน computer ได้แก่พวก Scanner , OCR หรือเครื่องอ่านตัวอักษรจากภาษาที่แสดง ได้ (ปัจจุบัน OCR ในภาษาอังกฤษได้ผลเป็นที่น่าพอใจ แต่ สำหรับภาษาไทย
ยังไม่ประสพผลสำเร็จ) เครื่องอ่านรหัสแถบ (Bar code)
        กลุ่มที่ 4 เป็นการป้อนข้อมูลด้วยเสียงได้แก่ระบบการจดจำเสียงพูด (Speech recognition) เป็นระบบทบทวนและตรวจสอบเสียงปัจจุบันยังไม่ได้ผลพอที่จะนำมาใช้งานอย่างจริงจัง   เนื่องจากเสียงของคนแต่ละคนต่างกัน
แม้แต่คนคนเดียวกันพูดสองครั้งยังไม่เหมือนกัน จึงยังนำมาใช้เป็นมาตรฐานไม่ได้
        กลุ่มที่ เป็นกลุ่มที่ป้อนข้อมูลด้วยตัวตรวจจับพิเศษ เช่น Switch, Sensor วัดด้าน อุณหภูมิ ความดัน แล้วเปลี่ยนเป็นสัญญาณอนาลอกเป็น ดิจิตอล การป้อนข้อมูลแบบอัตโนมัตเป็นระบบ ที่ใช้ในการควบคุมเครื่องจักร อุปกรณ์ต่างๆ
        แป้นพิมพ์  อุปกรณ์อินพุตขั้นพื้นฐาน
        การพิมพ์เป็นเทคโนโลยีที่เก่าแก่เครื่องพิมพ์ดีดเครื่องแรกของโลกมี หลักฐานยืนยันว่ามีผู้ประดิษฐ์มาแล้วเกือบ 300 ปี แต่เครื่องพิมพ์ดีดที่ได้รับการจดทะเบียนและบันทึกหลักฐานไว้โดย เ?นรี่ มีล เมื่อวันที่ 7 มกราคม พ.ศ. 2257 พัฒนาการของพิมพืดีดก็ก้าวหน้าขึ้นมาเป้นลำดับ ครั้นถึงยุคสมัยอิเล็กทรอนิกส์และคอมพิวเตอร์แป้นพิมพ์ดีดจึงได้รับการนำมาใช้เป้นอุปกรณ์ ป้อนตัวอักษรให้กับคอมพิวเตอร์ตั้งแต่ยุคแรกๆโดยเริ่มจากการป้อนผ่านบัตรเจาะรูแล้วให้เครื่องอ่านบัตรเจาะรูอีกครั้งหนึ่ง การป้อนข้อมูลตัวอักขระในยุคแรกจึงเน้นการป้อนข้อมูลเข้าด้วยรหัส ทางบริษัทไอบีเอ็มได้กำหนดรหัสตามโซน
ของรูที่เจาะ ซึ่งเรียกว่ารหัสเอปซีดิกมาจนถึงปัจจุบัน
      ความเป็นมาในการหาวิธีป้อนข้อมูลด้วยวิธีอื่น
        การสั่งงานคอมพิวเตอร์ด้วยแป้นพิมพ์ตัวอักขระยังสร้างความยุ่งยากต่อผู้ใช้ในบางเรื่อง เช่น ต้องจดจำข้อความที่เป็นคำสั่ง การป้อนคำสั่งจะต้องใช้ตัวอักษรหลายตัวเรียงต่อเนื่องกัน ทำให้เสียเวลา ระยะหลังจึงมีคนคิดพยายามหา
วิธีการป้อนข้อมูลในรูปแบบอื่น โดยเฉพาะสัญลักษณ์ทางกราฟิก เนื่องจากสามารถสื่อความหมายกับผู้ใช้ได้ดีกว่าตัวอักษรเสียอีก ดังนั้นระบบคอมพิวเตอร์ ในสมัยปัจจุบันจึงหันมาใช้ระบบ GUI-Graphic User Interface กันมาก และมีแนวทางที่จะแพร่หลายต่อไปอีกในโอกาสข้างหน้า
        จุดเริ่มต้นของความพยายามหาอุปกรณ์อินพุตมาช่วยงาน โดยเฉพาะในระบบของการติดต่อกับคอมพิวเตอร์มีมากกว่า 30 ปีแล้ว และมีการพัฒนาให้ดีขึ้นเรื่อยๆเป็นลำดับจนถึงปัจจุบัน โดยเฉพาะอย่างยิ่งในช่วงหลังจากปีค.. 1980 เป็นต้นมา มีการพัฒนาอุปกรณ์ช่วยอินพุตแบบต่างๆ ขึ้นมาใช้กันมาก
        กระดาษสเก็ตช์เป็นจุดเริ่มต้น
        กระดาษสเก็ตช์ถือได้ว่าเป็นอุปกรณ์อินพุตที่ใช้กับกราฟิกรุ่นแรก จุดเริ่มต้นของกระดาษสเก็ตช์เริ่มจากนายอิเวน อี. ซูเธอร์แลนด์(Ivan E. Sutherland) ได้ออกแบบสร้างขึ้นในขณะที่เขาเป็นนักศึกษาปริญญาเอกที่เอ็มไอทีเมื่อ
ปีค.ศ. 1962 และเสนอวิทยานิพนธ์ด้วยการใช้กระดาษสเก็ตช์เป็นอุปกรณ์อินพุตสำหรับระบบกราฟิกเพื่อการเขียนรูป ระบบกราฟิกที่ใช้นี้ได้รับการพัฒนาบนเครื่องเมนเฟรมคอมพิวเตอร์ TX-2 ของเอ็มไอที ดังรูป

          ในระหว่างนั้นอุปกรณ์อินพุตที่ใช้กำหนดรูปภาพทางกราฟิกมีให้ใช้แล้วคือ ปากกาแสง แต่ปากกาแสงมีข้อจำกัดคือ ใช้กำหนดจุด การลากเส้น แต่กระดาษสเก็ตช์ยังให้รายละเอียดเพิ่มเติมได้อีก เช่น กำหนดขนาดของเส้น ความสัมพันธ์ของรูปกราฟิก ซูเธอร์แลนด์ได้พัฒนาระบบกราฟิกที่ใช้หลักการของวินโดว์มีการขยายหรือย่อภาพได้
เรื่องราวเกี่ยวกับเม้าส์
          ช่วงปี ค.ศ. 1950-1960 การใช้อุปกรณ์ชี้ตำแหน่งที่รู้จักกันดีคือปากกาแสง การใช้ปากกาแสงจะต้องชี้ตำแหน่งลงไปบนจอภาพ และต้องยกออกจากจอภพไปมา ทำให้ยุ่งยากต่อการใช้และที่สำคัญคือเทคโนโลยีของปากกาแสงต้องรอให้จอภาพสแกน
จุดสว่างวิ่งไปทั้งจอเพื่อซิงก์กับตัวรับที่ปากกา จึงต้งอาศัยเทคนิคที่ยุ่งยากซับซ้อนและทำให้มีราคาแพง
          ในปี ค.ศ. 1964 Engelbart ได้ทำการทดสอบอุปกรณ์ชี้ตำแหน่งที่มีในขณะนั้น ซึ่งได้แก่ ปากกาแสง จอยสติ๊ก ตลอดจนอุปกรณ์ลากเส้นกราฟที่ต่อกับโพเทนซิโอมิเตอร์ เขาพบว่าอุปกรณ์ชี้ตำแหน่งเหล่านั้นยังใช้งานได้ไม่ดีนักโดยเฉพาะการที่จะใช้ชี้ตำแหน่งและลากเส้นบางอย่างไปด้วยกัน พลันเขาก็นึกไปถึงอุปกรณ์ที่เขาใช้ร่วมกับเพื่อนร่วมชั้นในปี ค.ศ. 1940 ที่ใช้ในการวัดพื้นที่ที่เรียกว่า พลานิมิเตอร์(planimeter) ซึ่งประกอบด้วยแขนสองแขน พร้อมลูกล้อที่ติดกับแขน ลูกล้อนั้นจะเลื่อนหมุนไปตามแกนคือ แกน X และ
แกน Y ในขณะที่เลื่อนปลายแขนไป และหากเขาติดโพเทนซิโอมิเตอรไว้ที่ลูกกลิ้งที่หมุนบอกตำแหน่งแกน X และ แกน Y เขาก็น่าจะทำอุปกรณ์ชี้ตำแหน่งให้กับคอมพิวเตอร์ได้และจุดนี้เองเป็นต้นเหตุให้เกิดความคิดในการออกแบบเมาส์ที่มีใช้ในยุคต่อมา
          เมาส์ตัวแรกยังมีขนาดใหญ่ เพราะต้องใช้แกนหมุนของโพเทนซิโอมิเตอร์ การหมุนนี้จะเป็นสัดส่วนของการเลื่อนเคอร์เซอร์ไปตามแกน X และแกน Y การเลื่อนเคอร์เซอร์ไปมา
ในระบบคอมพิวเตอร์จึงทำได้ โปรแกรมคอมพิวเตอร์ก็สามารถควบคุมการทำงาน การตรวจสอบและใช้ในการชี้ตำแหน่งได้ง่าย
หันมาใช้ลูกบอลเล็ก
          กลุ่มของ Engelbart ได้พัฒนาเมาส์ต่อไปอีก จนกระทั่งสามารถหาสัดส่วนของการหมุนโพเทนซิโอมิเตอร์กับการเคลื่อนที่จริงบนจอภาพ เพื่อให้ง่ายต่อการควบคุม และในที่สุดก็ได้พัฒนามาเป็นลูกบอลเล็กๆที่กลิ้งไปมาได้ทุกทิศทาง เพื่อเลื่อนแกนหมุนสองแกนของโพเทนซิโอมิเตอร์
          อย่างไรก็ตาม ในระยะหลังได้มีการพัฒนากลไกให้สามารถใช้งานง่ายขึ้น เช่น ใช้การเปลี่ยนสัญญาณจากอะนาลอกเป็นดิจิตอล การใช้แสงส่องพื้นโดยมีกริดเล็กๆ บอกตำแหน่งการเคลื่อนที่ไปมา เมาส์จึงมีรูปร่างอยางที่เห็น
          เมาส์ถูกนำมาประยุกต์จนเป็นที่แพร่หลายอย่างรวดเร็ว เพราะบริษัทซีล็อกซ์ได้พัฒนาระบบ GUI ใช้วินโดว์เมนูในรูปแบบที่ใช้ตัวชี้ตำแหน่งช่วยจึงเป็นจุดขยายตัวของการใช้เมาส์ หลังจานั้นต่อมาแอปเปิ้ล ลิซ่าและแมคอินทอชก็หันมาใช้เมาส์เป็นอุปกรณ์ประจำสำหรับการใช้ชี้ตำแหน่ง เมาส์จึงได้รับการกล่าวถึงและแพร่หลายคุ้นเคย
กับผู้ใช้เป็นอย่างยิ่ง
          ในปัจจุบันเมาส์ได้เข้ามามีบทบาทสำคัญในระบบวินโดว์ ตลอดจนการชี้ตำแหน่งในเวอร์กสเตชัน ในระบบโอเอสทู ระบบไมโครซอฟต์วินโดว์ ดังรูป

เส้นทางการพัฒนาระบบยูสเซอร์อินเตอร์เฟสที่ใช้เมาส์เป็นตัวชี้ตำแหน่ง
สงครามปุ่มกด
          ในยุคแรกของ SRI ที่ทำการพัฒนาเมาส์ได้กำหนดให้มีปุ่มกด 3 ปุ่มเรียงกัน บริษัทซีล็อกซ์ก็ใช้ปุ่มกด 3 ปุ่มเช่นกัน ในขณะที่เมาส์ของบริษัทแอปเปิ้ลที่เอามาใช้กับเครื่องแมคอินทอชใช้ปุ่มกดเพียงปุ่มเดียว  และจัดเป็นอุปกรณ์อินพุตหลักสำคัญในระบบ (ดูที่รูป)

          แต่ที่เมาส์ของบริษัทอื่นทั้งหมดที่ใช้กันในขณะนี้ใช้ปุ่มกด 2 หรือ 3 ปุ่ม ลักษณะการกดปุ่มและจะใช้กี่ปุ่มดี จะมีมาตรฐานที่ใช้อย่างไรคงต้องติดตามกันต่อไป ส่วนขนาดและรูปร่างของเมาส์มีขนาด 6 x 10 เซนติเมตร ซึ่งพอเหมาะกับมือของผู้ใช้
          นอกจากสงครามปุ่มกดแล้ว สงครามขั้นต่อมาคือลักษณะของวินโดว์และตำแหน่งต่างๆที่ผู้ใช้จะสามารถเชื่อมติดต่อด้วย ลักษณะของเมนู การทำ Pop หรือ Pull ลักษณะของไดอะลอกที่ใช้ตอบสนองกับผู้ใช้ ตลอดจนรูปร่างของสัญลักษณ์บนจอภาพ

ตัวอย่างของสัญลักษณ์ที่ออกแบบให้แตกต่างกัน
ดิจิไตเซอร์
          ดิจิไตเซอร์เป้นชื่อย่อๆของการเรียก ดิจิไตซิ่งแท็บเล็ต ซึ่งเป็นอุปกรณ์อินพุตของไมโครคอมพิวเตอร์ โดยทั่วไปจะประกอบด้วยกระดานหนึ่งแผ่นกับอุปกรณ์ชี้ตำแหน่งบางทีเราเรียกว่า ทรานซดิวเซอร์ กระดานแท็บเล็ตเป็นกระดานเรียบเพื่อใช้เป้นพื้นที่สำหรับการเขียนรูป

ตัวอย่างการใช้ดิจิไตซิ่งแท็บเล็ตในงาน CAD
          บนกระดานแท็บเล็ตจะประกอบด้วยเส้นลวดแนวแกนดิ่งและแนวแกนนอนที่ใช้ในการแทนโคออร์ดิเนตทางแกน X และ Y เส้นลวดภายในตรวจสอบสนามแม่เหล้กที่ส่งออกมา เพื่อเหนี่ยวนำลวดทางแกน X และ Y ชี้บอกตำแหน่ง X,Y
          สเปกของดิจิไตซิ่งแท็บเล็ตที่สำคัญ คือความละเอียดของการกำหนดตำแหน่งหรือเรียกว่ารีโซลูชัน ค่าของรีโซลูชันจะเป้นตัวบอกว่าจุดที่อยู่บนกระดานแท็บเล็ตนี้มีระยะห่างน้อยที่สุดเท่าไดที่จะแยกออกจากกันได้ หากผู้ผลิตใช้ค่ารีโซลูชันเป็น 200 เส้นต่อนิ้ว(lpi) ก็หมายความว่ากระดานขนาด 12 x 12 นิ้ว ค่าความละเอียดของจุดในแนว
แกนทั้งสองจะแสดงจุดได้จากโคออร์ดิเนต 0-2400 หรือค่าความละเอียดบนกระดานแท็บเล็ตนี้เท่ากับ 1/200 นิ้ว
          ส่วนค่าความถูกต้อง(accuracy) เป็นค่าที่ใช้บอกความถูกต้องของการตรวจสอบเทียบกับมาตรฐานที่รู้ เช่น การวัดความถูกต้องของผู้ผลิตกำหนดไว้จาก 0.001-0.035 นิ้ว ซึ่งค่าความถูกต้องนี้จะสัมพันธ์กับจำนวนเส้นต่อนิ้ว
          การต่อเชื่อมกับคอมพิวเตอร์จะมีส่วนที่สำคัญอีกส่วนหนึ่งคือ การส่งข้อมูล ซึ่งส่วนใหญ่ต่อเชื่อมแบบอนุกรมและอัตราการส่งคือการสื่อสารที่จะส่งข้อมูลได้กี่จุดต่อวินาที
การอินพุตด้วยรูปภาพ
           รูปที่ใช้ในงานทางด้านคอมพิวเตอร์เป้นจุดเล็กๆเรียงต่อกันแต่ละจุดจะเป็นเพียงจุดขาวดำ หรือมีสัดส่วนความเข้มหรือสี ในปัจจุบันอุปกรณ์ที่เรียกว่าอิมเมจสแกนเนอร์เป็นอุปกรณ์ที่มีราคาไม่แพงนัก สแกนเนอร์ที่ใช้มือถือ(ดูภาพประกอบในรูปที่ 7)อันหนึ่งราคาไม่ถึงหนึ่งหมื่นบาท สแกนเนอร์ชนิดสแกนทีละแผ่นก็เป็นอุปกรณ์อินพุตอย่างหนึ่ง ที่จะอ่านค่าภาพเข้าไปเก็บได้
          ภาพที่อ่านได้จะผ่านการกำหนดเป็นจุดของข้อมูล ดังนั้นหากภาพหนึ่งมีรายละเอียดและสแกนเนอร์ให้ความละเอียดได้ 300 จุดต่อนิ้ว ดังนั้นข้อมูลขนาด 12 x 12 นิ้ว จะมีข้อมูลที่ต้องเก็บมากมายมหาศาลเท่ากับ 12 x 12 x 300 x 300           สแกนเนอร์โดยทั่วไปจะเชื่อมต่อกับระบบไมโครคอมพิวเตอร์โดยมีระบบฮาร์ดแวร์ พิเศษควบคุม ทั้งนี้เพราะต้องนำข้อมูลมหาศาลเก็บเข้าไว้ในหน่วยความจำหรือดิสค์ ดังนั้นจึงต้องมีขบวนการดีเอ็มเอพิเศษช่วยประกอบด้วย
          จากสแกนเนอร์เมื่อเก็บภาพได้ ภาพที่ได้จะเป็นตัวอักษรและมีซอฟแวร์ที่พัฒนา ขึ้นมาแปรค่าให้เป้นตัวอักษรที่รู้จักกันดี เราเรียกระบบนี้ว่า OCR-Optical Character Reader คือระบบการรู้นำตัวอักษร ระบบนี้กำลังได้รับการพัฒนาให้ดีขึ้นเป็นลำดับ อย่างไรก็ตาม ระบบนี้ยังมีข้อยุ่งยากทางด้านทฤษฎีและการแปรค่าความถูกต้องของการแปรความหมาย
อันเป็นเรื่องสำคัญยิ่ง
บาร์โค้ดหรือรหัสแถบ
          บาร์โค้ดหรือรหัสแถบได้รับการพัฒนาานานกว่า 20 ปีแล้ว รหัสแถบนี้ได้รับการประยุกต์ใช้งานในห้างสรรพสินค้า โรงงานอุตสาหกรรม การทหาร อุตสาหกรรมการผลิตการประกันภัย ฮลฮ รหัสแถบนี้เป็นเสมือนสัญลักษณ์ที่ใช้แถบรหัส ซึ่งต้องอาศัยเครื่องอ่านจึงจะแปรค่าตัวเลขหรือตัวอักษรนั้นๆออกมา
          รหัสแถบที่ใช้ในยุคต้นๆใช้รหัสที่ชื่อ UPC-Universal Product Code ซึ่งได้รับการศึกษาและออกแบบมากว่า 20 ปีแล้ว และหลังจากนั้นก็มีการเสนอแนวความคิดที่ใช้แถบรหัสเพื่อจุดประสงค์อื่น และเน้นให้มีการถอดรหัสได้ง่ายและไม่ผิดพลาด
          ในปัจจุบันความต้องการใช้รหัสแถบมีมากขึ้นจึงต้องมีการสร้างเครื่องถอดรหัสมาใช้ ในซูเปอร์มาเก็ตใช้รหัสแถบที่มีตัวเลข 11 ตัวเพื่อใช้ในการแยกแยะชนิดของสินค้า และเมื่อเครื่องถอดรหัสได้ก็จะมองหาราคาในแฟ้มราคาแล้วพิมพ์รายการหรือรวมยอดให้
          เครื่องถอดรหัสแถบจึงต้องมีจุดมุ่งหมายให้อ่านแถบรหัสและแปรค่าโดยมีความต้องการพิเศษของการใช้รหัสแถบดังนี้
  คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/indatcon/blue_bal.gif ความเชื่อถือในการอ่านและถอดรหัสให้ถูกต้อง
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/indatcon/blue_bal.gif ต้องลดต้นทุนการพิมพ์รหัสแถบ
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/indatcon/blue_bal.gif สามารถถอดรหัสให้ได้ถึงแม้รหัสจะมีความหนาแน่นของแถบสูง
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/indatcon/blue_bal.gif ต้องทำให้เครื่องอ่านมีราคาถูกลง
          รหัสแถบที่ใช้กันนั้นใช้หลักการของเดลต้าคอมมูนิเคชั่นในการกำหนดรหัส ลองพิจารณาจากรูป

           รหัสแบบเดลต้าเป็นวิธีที่ง่ายมากโดยการแบ่งเป็นโมดูลย่อยๆ ที่จะกำหนดค่า 0 หรือ 1 โมดูล 1 จะแทน ด้วยช่องว่างสีขาวหรือแถบดำหนึ่งแถบจึงแทนตัวเลข 0 หรือ 1หลายโมดูล ส่วนอีกแบบหนึ่งเราเรียกว่า รหัสความกว้างโดยใช้ความกว้างสองขนาดแทนตัวเลข 0 หรือ 1 ลองพิจารณาจากรูปที่ 8 จะเห็นว่าเราเริ่มที่ 1 ใช้แถบกว้าง แต่ถ้ารหัสตัวต่อมาเป็น 0 ก็จะได้แถบขาวที่แคบกว่า และถ้ามีการเปลี่ยนค่าก็จะเปลี่ยนขนาดด้วย
สิ่งที่สำคัญของการถอดรหัสคือเครื่องสแกนอ่านรหัสแถบจะมีความเร็วในการสแกนไม่เท่ากัน เช่น เครื่องแสกนที่ใช้มือถือ ดังนั้นจึงต้องคำนึงถึงเรื่องนี้เป็นสำคัญ อย่างไรก็ตามอาจต้องหาวิธีการซิงโครไนซ์ เพื่อเป็นตัวกำหนความกว้างในตัวเองเสมือนเป็นสัญญาณนาฬิกา
รู้จักกับรหัส UPC
          UPC-Universal Product Code เป็นรหัสที่ใช้ในการแทนรหัสสินค้าที่ใช้ในการแทนรหัสสินค้าที่ใช้ในห้างสรรพสินค้าของอเมริกันมากว่า 15 ปี แต่ละรหัส
ประกอบด้วยตัวเลข 12 หลัก ตัวเลขแต่ละตัวใช้รหัสแบบ 7 โมดูล โดยมีแถบบาร์ สีดำและขาวอย่างละ 2 แถบ เราจะเรียกการแทนรหส UPC แต่ละตัวว่ารหัส delta(7,2) คือใช้ หลักการเดลต้า 7 โมดูล 2 คู่แถบดำขาว

            ตัวเลขแต่ละตัวแบ่งแถบออกมาเป็นบาร์ได้ดังรูป ซึ่งจะเห็นได้ว่าเราแบ่งรหัสตามโมดูลให้มีแถบดำสองแถบและขาวสองแถบอย่างไรก็ตามการกำหนดรหัสนี้จะ
ต้องคำนึงถึงการอ่านด้วยเพราะจากสภาพการอ่านจริงเราสามารถอ่านแถบจากซ้ายไปขวาหรือขวาไปซ้ายก็ได้ ดังนั้นรหัสที่แทนตัวเลขทุกตัวจะต้องอ่านได้จากซ้ายไปขวา หรือขวาไปซ้ายโดยไม่ซ้ำกับรหัสอื่น
            การแทนรหัส UPC ของตัวเลข 0-9 แสดงได้ดังตาราง
 
  ซึ่งจากตารางจะเห็นว่าเลขที่ 1แถบรหัสจะเป็น 2,2,2,1 หมายถึงแถบกว้าง 2 หน่วย กลับกัน ถ้าจากซ้ายเป็น 00110001 จะเป็นแถบขาวกว้างสองโมดูล แถบดำสองโมดูล ขางสองโมดูลและดำหนึ่งโมดูล สังเกตว่า 2,2,2,1 เมื่อกลับข้างจากขวาจะเป็นรหัส 1,2,2,2 ซึ่งก็ไม่ไปซ้ำกับรหัสใด ดังนั้นเมื่อเครื่องอ่านย้อนกลับก็ได้รหัส 1,2,2,2
จึงไม่ซ้ำกับรหัสใดที่จะทำให้ผิดพลาดได้
          รหัส UPC ที่อยู่ในแถบสินค้าแสดงดังรูปที่ 10 รหัสที่อยู่บน UPC แบ่ง โซนตัวเลขเป็นดังนี้
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/indatcon/blue_bal.gif แถบกำหนดของซ้ายใช้ตัวรหัส 101
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/indatcon/blue_bal.gif ตัวเลข 6 ตัวแบบคี่ (คอลัมน์ซ้ายในตารางที่ 1) เลขหลักแรกแทนประเภทอุตสาหกรรม เช่น
        0 เป็นประเภทของชำ
        3 เป็นประเภทยา
        เลขห้าหลักต่อมาคือรหัสผู้ผลิต
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/indatcon/blue_bal.gif แถบกำหนดกึ่งกลาง (01010)
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/indatcon/blue_bal.gif ตัวเลข 6 ตัวแบบคู่ (คอลัมน์ขวานตารางที่ 1) เลขห้าหลักแทนรหัสชนิดหนึ่งหลักเป็นตัวเลข check digit
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/indatcon/blue_bal.gif แถบกำหนดของขวา
            นอกจากนี้จังมีการกำหนดรหัสแถบเป็นแบบอื่นอีก เช่น รหัส 128 เป็นรหัสแบบเดลต้า 11 โมดูล 3 คู่แถบแทนรหัสแต่ละตัวได้ 106 ตัว ซึ่งนำมาใช้ในการแทนตัวอักษรเหมือนรหัสแอสกีได้ตารางข้างต้น เป็นตารางที่สรุปถึงรหัสแถบแบบต่างๆ ซึ่งมีวิธีการกำหนดเป็นมาตรฐานตลอดจนการใช้งาน กันในโอกาสต่างๆ เพราะรหัส
UPC แทนได้เฉพาะตัวเลข 0-9 ย่อมไม่เพียงพอจึงต้องมีรูปแบบอย่างอื่นเข้ามาช่วยเสริมรหัสแถบทีใช้ในปัจจุบันกำลังพัฒนาไปในด้านการประยุกต์ และจะมีบทบาท
ที่สำคัญในงานต่างๆ อีกมากแม้แต่บัตรเอทีเอ็มก็มีการบันทึกในแถบแม่เหล็กแบบ รหัสแถบอนาคตยังต้องพัฒนาต่อไปด้วยเทคโนโลยีที่มีการพัฒนาให้ก้าวหน้าเช่นนี้ จะมีอุปกรณ์อินพุตอีกหลายรูปแบบที่นำมาใช้ในงานด้านต่างๆ เช่น OMR-Optical Mark Reader ที่ใช้ในการตรวจสอบ ระบบรับรู้เสียงพูด เป็นต้น
            อย่างไรก็ตาม เทคโนโลยีหลายอย่างยังคงต้องพัฒนา และมีแนวโน้มที่จะเป็นไปได้ เช่น การอ่านข้อความให้คอมพิวเตอร์เสมือนการพิมพ์การอ่านภาพ และแปลความหมายในลักษณะที่เรียกว่า image processing ฮลฮ ก็เห็นจะต้องคอยติดตามดูระบบอินพุตที่จะพัฒนาต่อไปว่าจะพัฒนาก้าวหน้าได้สักเพียงไร

คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/h0.gif
คอมพิวเตอร์เป็นอุปกรณ์ที่มนุษย์ได้คิดประดิษฐ์ขึ้น เพื่อนำมาเสริมความสามารถของมนุษย์ในด้านการับรู้ การจำ การคำนวณ การเปรียบเทียบตัดสินใจ และการแสดงออก ดังนั้นคอมพิวเตอร์จึงมีโครงสร้างที่ประกอบด้วยส่วนต่าง ๆ ให้สามารถทำงานเป็นระบบสนองความต้องการของมนุษย์
การประมวลผลข้อมูลของคอมพิวเตอร์จะประกอบด้วยอุปกรณ์รับเข้า (input device) เพื่อรับข้อมูลและคำสั่งจากผู้ใช้ภายนอกเข้าไปเก็บอยู่ในอุปกรณ์เก็บข้อมูลหรือหน่วยความจำหลัก (main memory) คำสั่งที่เก็บในส่วนความจำหลักจะถูกนำไปตีความ และสั่งทำงานที่หน่วยประมวลผลกลาง ที่เรียกว่า ซีพียู ซึ่งเป็นหัวใจของการทำงานในคอมพิวเตอร์ทำหน้าที่คำนวณและเปรียบเทียบข้อมูลที่เก็บในหน่วยความจำหลัก ผลจากการคำนวณหรือประมวลผลจะนำกลับไปเก็บยังหน่วยความจำหลัก และพร้อมที่จะนำออกแสดงที่อุปกรณืส่งออก (output device) กลับไปสู่ผู้ใช้งานคอมพิวเตอร์ต่อไป ดังนั้นระบบคอมพิวเตอร์ประกอบด้วย ซีพียู หน่วยความจำ อุปกรณ์รับเข้า และอุปกรณ์ส่งออก

คีย์บอร์ด

เป็นอุปกรณ์รับเข้าพื้นฐานที่ต้องมีในคอมพิวเตอร์ทุกเครื่องจะรับข้อมูลจากการกดแป้นแล้วทำการเปลี่ยนเป็นรหัสเพื่อส่งต่อไปให้กับคอมพิวเตอร์ แป้นพิมพ์ที่ใช้ในการป้อนข้อมูลจะมีจำนวนตั้งแต่ 50 แป้นขึ้นไป แผงแป้นอักขระส่วนใหญ่มีแป้นตัวเลขแยกไว้ต่างหาก เพื่อทำให้การป้อนข้อมูลตัวเลขทำได้ง่ายและสะดวกขึ้น
การวางตำแหน่งแป้นอักขระ จะเป็นไปตามมาตรฐานของระบบพิมพ์สัมผัสของเครื่องพิมพ์ดีด ที่มีการใช้แป้นยกแคร่ (shift) เพื่อทำให้สามารถใช้พิมพ์ได้ทั้งตัวอักษรภาษาอังกฤษตัวพิมพ์ใหญ่และตัวพิมพ์เล็ก ซึ่งระบบรับรหัสตัวอักษรภาษาอังกฤษที่ใช้ในทางคอมพิวเตอร์ส่วนใหญ่จะเป็นรหัส 7 หรือ 8 บิต กล่าวคือ เมื่อมีการกดแป้นพิมพ์ แผงแป้นอักขระจะส่งรหัสขนาด 7 หรือ 8 บิต นี้เข้าไปในระบบคอมพิวเตอร์ 
เมื่อนำเครื่องคอมพิวเตอร์มาใช้งานพิมพ์ภาษาไทยจึงต้องมีการดัดแปลงแผงแป้นอักขระให้สามารถใช้งานได้ทั้งภาษาอังกฤษและภาษาไทย กลุ่มแป้นที่ใช้พิมพ์ตัวอักษรภาษาไทยจะเป็นกลุ่มแป้นเดียวกับภาษาอังกฤษ แต่จะใช้แป้นพิเศษแป้นหนึ่งทำหน้าที่สลับเปลี่ยนการพิมพ์ภาษาไทย หรือภาษาอังกฤษภายใต้การควบคุมของซอฟต์แวร์อีกชั้นหนึ่ง 
แผงแป้นอักขระสำหรับเครื่องไมโครคอมพิวเตอร์ตระกูลไอบีเอ็มที่ผลิตออามารุ่นแรก ๆ ตั้งแต่ พ.ศ. 2524 จะเป็นแป้นรวมทั้งหมด 83 แป้น ซึ่งเรียกว่า แผงแป้นอักขระพีซีเอ็กซ์ที ต่อมาในปี พ.ศ. 2527 บริษัทไอบีเอ็มได้ปรับปรุงแผงแป้นอักขระ กำหนดสัญญาณทางไฟฟ้าของแป้นขึ้นใหม่ จัดตำแหน่งและขนาดแป้นให้เหมาะสมดียิ่งขึ้น โดยมีจำนวนแป้นรวม 84 แป้น เรียกว่า แผงแป้นอักขระพีซีเอที และในเวลาต่อมาก็ได้ปรับปรุงแผงแป้นอักขระขึ้นพร้อม ๆ กับการออกเครื่องรุ่น PS/2 โดยใช้สัญญาณทางไฟฟ้า เช่นเดียวกับแผงแป้นอักขระรุ่นเอทีเดิม และเพิ่มจำนวนแป้นอีก 17 แป้น รวมเป็น 101 แป้น 
การเลือกซื้อแผงแป้นอักขระควรพิจารณารุ่นใหม่ที่เป็นมาตรฐานและสามารถใช้ได้กับเครื่องคอมพิวเตอร์ที่มีอยู่ 
สำหรับเครื่องขนาดกระเป๋าหิ้วไม่ว่าจะเป็นแล็ปท็อปหรือโน้ตบุ๊ค ขนาดของแผงแป้นอักขระยังไม่มีการกำหนดมาตรฐาน เพราะผู้ผลิตต้องการพัฒนาให้เครื่องมีขนาดเล็กลงโดยลดจำนวนแป้นลง แล้วใช้แป้นหลายแป้นพร้อมกันเพื่อทำงานได้เหมือนแป้นเดียว
เมาส์

ซอฟต์แวร์รุ่นใหม่ที่พัฒนาในระยะหลัง ๆ นี้ สามารถติดต่อกับผู้ใช้โดยการใช้รูปกราฟิกแทนคำสั่ง มีการใช้งานเป็นช่วงหน้าต่าง และเลือกรายการหรือคำสั่งด้วยภาพ หรือสัญรูป (icon) อุปกรณ์รับเข้าที่นิยมใช้จึงเป็นอุปกรณ์ประเภทตัวชี้ที่เรียกว่า เมาส์เมาส์เป็นอุปกรณ์ที่ให้ความรู้สึกที่ดีต่อการใช้งาน ช่วยให้การใช้งานง่ายขึ้นด้วยการใช้เมาส์เลื่อนตัวชี้ไปยังตำแหน่งต่าง ๆ บนจอภาพ ในขณะที่สายตาจับอยู่ที่จอภาพก็สามารถใช้มือลากเมาส์ไปมาได้ ระยะทางและทิศทางของตัวชี้จะสัมพันธ์และเป็นไปในแนวทางเดียวกับการเลื่อนเมาส์
เมาส์แบ่งได้เป็นสองแบบคือ แบบทางกลและแบบใช้เแสง แบบทางกลเป็นแบบที่ใช้ลูกกลิ้งกลม ที่มีน้ำหนักและแรงเสียดทานพอดี เมื่อเลื่อนเมาส์ไปในทิศทางใดจะทำให้ลูกกลิ้งเคลื่อนไปมาในทิศทางนั้น ลูกกลิ้งจะทำให้กลไกซึ่งทำหน้าที่ปรับแกนหมุนในแกน X และแกน Y แล้วส่งผลไปเลื่อนตำแหน่งตัวชี้บนจอภาพ เมาส์แบบทางกลนี้มีโครงสร้างที่ออกแบบได้ง่าย มีรูปร่างพอเหมาะมือ ส่วนลูกกลิ้งจะต้องออกแบบให้กลิ้งได้ง่ายและไม่ลื่นไถล สามารถควบคุมความเร็วได้อย่างต่อเนื่องสัมพันธ์ระหว่างทางเดินของเมาส์และจอภาพ เมาส์แบบใช้แสงอาศัยหลักการส่งแสงจากเมาส์ลงไปบนแผ่นรองเมาส์ (mouse pad) 

แผ่นรองเมาส์ซึ่งเป็นตาราง (grid) ตามแนวแกน และ Y เมื่อเลื่อนตัวเมาส์เคลื่อนไปบนแผ่นตารางรองเมาส์ก็จะมีแสงตัดผ่านตารางและสะท้อนขึ้นมาทำให้ทราบตำแหน่งที่ลากไปเมาส์แบบนี้ไม่ต้องใช้ลูกกลิ้งกลม แต่ต้องใช้แผ่นตารางรองเมาส์พิเศษ การใช้เมาส์จะเป็นการเลื่อนเมาส์เพื่อควบคุมตัวชี้บนจอภาพไปยังตำแหน่งที่ต้องการแล้วทำการยืนยันด้วยการกดปุ่มเมาส์ ปุ่มกดบนเมาส์มีความแตกต่างกัน สำหรับเครื่องแมคอินทอช ปุ่มกดเมาส์จะมีปุ่มเดียว แต่เมาส์ที่ใช้กับเครื่องไมโครคอมพิวเตอร์ตระกูลไอบีเอ็มส่วนใหญ่จะมี 2 ปุ่ม โดยทั่วไปปุ่มทางซ้ายใช้เพื่อยืนยันการเลือกรายการและปุ่มทางขวาเป็นการยกเลิกรายการ เมาส์บางยี้ห้ออาจเป็นแบบ 3 ปุ่ม ซึ่งเราไม่ค่อยพบในเครื่องระดับพีซี ส่วนใหญ่จะเป็นเมาส์ของเครื่องคอมพิวเตอร์ที่เป็นสถานีงานวิศวกรรม การเลือกซื้อเมาส์ควรพิจาณาจำนวนปุ่มให้ตรงกับความต้องการของซอฟต์แวร์ ในระดับเครื่องพีซีแนะนำให้ใช้เมาส์แบบสองปุ่มเพราะซอฟต์แวร์เกือบทั้งหมดสนับสนุนใช้งานเมาส์ประเภทนี้
 สแกนเนอร์ คืออุปกรณ์ซึ่งจับภาพและเปลี่ยนแปลงภาพจากรูปแบบของแอนาลอกเป็นดิจิตอลซึ่งคอมพิวเตอร์ สามารถแสดง, เรียบเรียง, เก็บรักษาและผลิตออกมาได้ ภาพนั้นอาจจะเป็นรูปถ่าย, ข้อความ, ภาพวาด หรือแม้แต่วัตถุสามมิติ สามารถใช้สแกนเนอร์ทำงานต่างๆได้ดังนี้
            - ในงานเกี่ยวกับงานศิลปะหรือภาพถ่ายในเอกสาร
            - บันทึกข้อมูลลงในเวิร์ดโปรเซสเซอร์
            - แฟ็กเอกสาร ภายใต้ดาต้าเบส และ เวิร์ดโปรเซสเซอร์
            - เพิ่มเติมภาพและจินตนาการต่าง ๆ ลงไปในผลิตภัณฑ์สื่อโฆษณาต่าง ๆ
             โดยพื้นฐานการทำงานของสแกนเนอร์, ชนิดของสแกนเนอร์ และความสามารถในการทำงานของสแกนเนอร์แบ่งออกได้ดังต่อไปนี้
ชนิดของเครื่องสแกนเนอร์
             สแกนเนอร์สามารถจัดแบ่งตามลักษณะทั่วๆ ไป ได้ 2 ชนิด คือ
             Flatbed scanners, ซึ่งใช้สแกนภาพถ่ายหรือภาพพิมพ์ต่าง ๆ สแกนเนอร์ ชนิดนี้มีพื้นผิวแก้วบนโลหะที่เป็นตัวสแกน เช่น ScanMaker III Transparency and slide scanners, ซึ่งถูกใช้สแกนโลหะโปร่ง เช่น ฟิล์มและ สไลด์
การทำงานของสแกนเนอร์
             การจับภาพของสแกนเนอร์ ทำโดยฉายแสงบนเอกสารที่จะสแกน แสงจะผ่านกลับไปมาและภาพ จะถูกจับโดยเซลล์ที่ไวต่อแสง   เรียกว่า charge-couple device หรือ CCD ซึ่งโดยปกติพื้นที่มืดบน กระดาษจะสะท้อนแสงได้น้อยและพื้นที่ที่สว่างบนกระดาษจะสะท้อนแสงได้มากกว่า CCD จะสืบหาปริมาณแสงที่สะท้อนกลับ
จากแต่ละพื้นที่ของภาพนั้น และเปลี่ยนคลื่นของแสงที่สะท้อน กลับมาเป็นข้อมูลดิจิตอล  หลังจากนั้นซอฟต์แวร์ที่ใช้สำหรับการสแกนภาพก็จะแปลงเอาสัญญาณเหล่านั้นกลับมาเป็นภาพ บนคอมพิวเตอร์อีกทีหนึ่ง
สิ่งที่จำเป็นสำหรับการสแกนภาพมีดังนี้
             - สแกนเนอร์
             - สาย SCSI สำหรับต่อจากสแกนเนอร์ไปยังเครื่องคอมพิวเตอร์
             - ซอฟต์แวร์สำหรับการสแกนภาพ ซึ่งทำหน้าที่ควบคุมการทำงานของสแกนเนอร์ให้ สแกนภาพตามที่กำหนด
             - สแกนเอกสารเก็บไว้เป็นไฟล์ที่นำกลับมาแก้ไขได้อาจต้องมีซอฟต์แวร์ที่สนับสนุนด้าน OCR
             - จอภาพที่เหมาะสมสำหรับการแสดงภาพที่สแกนมาจากสแกนเนอร์
             - เครื่องมือสำหรับแสดงพิมพ์ภาพที่สแกน เช่น เครื่องพิมพ์แบบเลเซอร์หรือสไลด์โปรเจคเตอร์
ประเภทของภาพที่เกิดจากการสแกน  แบ่งเป็นประเภทดังนี้
             1. ภาพ Single Bit
                ภาพ Single Bit เป็นภาพที่มีความหยาบมากที่สุดใช้พื้นที่ในการเก็บข้อมูล น้อยที่สุดและ นำมาใช้ประโยชน์อะไรไ่ม่ค่อยได้ แต่ข้อดีของภาพประเภทนี้คือ ใช้ทรัพยากรของเครื่องน้อยที่สุดใช้พื้นที่ ในการเก็บข้อมูลน้อยที่สุด ใช้ระยะเวลาในการสแกนภาพน้อยที่สุด Single-bit แบ่งออกได้สองประเภทคือ
                - Line Art ได้แก่ภาพที่มีส่วนประกอบเป็นภาพขาวดำ ตัวอย่างของภาพพวกนี้ ได้แก่ ภาพที่ได้จากการสเก็ต
                 - Halftone ภาพพวกนี้จะให้สีที่เป็นโทนสีเทามากกว่า แต่โดยทั่วไปยังถูกจัดว่าเป็นภาพประเภท Single-bit เนื่องจากเป็นภาพหยาบๆ
             2. ภาพ Gray Scale
                ภาพพวกนี้จะมีส่วนประกอบมากกว่าภาพขาวดำ โดยจะประกอบด้วยเฉดสีเทาเป็นลำดับขั้น ทำให้เห็นรายละเอียดด้านแสง-เงา ความชัดลึกมากขึ้นกว่าเดิมภาพพวกนี้แต่ละพิกเซลหรือแต่ละจุดของภาพอาจประกอบด้วยจำนวนบิตมากกว่า
ต้องการพื้นที่เก็บข้อมูลมากขึ้น
             3. ภาพสี
                หนึ่งพิกเซลของภาพสีนั้นประกอบด้วยจำนวนบิตมหาศาล และใช้พื้นที่เก็บข้อมูลมาก ควาามสามารถในการสแกนภาพออกมาได้ละเอียดขนาดไหนนั้นขึ้นอยู่กับว่าใช้สแกนเนอร์ขนาดความละเอียดเท่าไร
             4. ตัวหนังสือ
                ตัวหนังสือในที่นี้ ได้แก่ เอกสารต่างๆ เช่น ต้องการเก็บเอกสารโดยไม่ต้อง พิมพ์ลงในแฟ้มเอกสารของเวิร์ดโปรเซสเซอร์ ก็สามารถใช้สแกนเนอร์สแกนเอกสาร ดังกล่าว และเก็บไว้เป็นแฟ้มเอกสารได้ นอก จากนี้ด้วยเทคโนโลยีปัจจุบันสามารถใช้ โปรแกรมที่สนับสนุน OCR (Optical Characters Reconize) มาแปลงแฟ้มภาพเป็น เอกสารดังกล่าวออกมาเป็นแฟ้มข้อมูลที่สามารถแก้ไขได้
รหัสแถบ (Bar code) คือ  แถบเส้นดำยาวพิมพ์เรียงเป็นแถบบนตัวภาชนะสำหรับบรรจุสินค้าที่วางขายกันตามร้านค้าหรือซูเปอร์มาร์เก็ททั่วไป สิ่งซึ่งแถบดำเหล่านี้เหมายถึงนั้นมักจะเป็น "ข้อความ" ที่ใช้บ่งบอกตัวสินค้านั้น ๆ เช่นว่า ยาสีฟัน เป็นต้น
การใช้รหัสแถบบวกกับเครื่องอ่านรหัสแถบนี้ทำให้เกิดความสะดวกรวดเร็ว และความแม่นยำในการทำงานได้มาก ตัวอย่างในซูเปอร์มาร์เก็ท รหัสแถบที่ติดอยู่บนตัวสินค้า จะทำให้การคิดเงินทำได้อย่างรวดเร็วและแม่นยำ คือเมื่อพนักงานเพียงแต่ใช้ตัวอ่านรหัสแถบรูดผ่านรหัสแถบ ก็จะทราบว่าสินค้าชนิดนั้นเป็นสินค้าอะไร เมื่อบวกกับการโปรแกรมราคาสินค้าเข้ากับเครื่องคิดเงินบางประเภท ความผิดพลาดในการกดราคาสินค้าก็จะไม่เกิดขึ้น และในกรณีนี้ไม่มีความจำเป็นที่จะต้องติดราคาสินค้าลงบนสินค้าทุกตัว ทำให้สะดวกต่อการเปลี่ยนแปลงราคาสินค้าในอีกทางหนึ่ง
อีกตัวอย่างของการใช้รหัสแถบได้แก่ ศูนย์แยกจดหมายหรือสิ่งของพัสดุภัณฑ์ ในปัจจุบันการแยกแยะจดหมายอัตโนมัติโดยการให้เครื่องอ่านที่อยู่บนซองจดหมายหรือพัสดุภัณฑ์นั้นยังทำไม่ได้ถึง 100 เปอร์เซ็นต์ และอีกประการหนึ่งความรวดเร็วก็ยังไม่ได้ระดับที่น่าพอใจ ระบบแยกจดหมายจึงใช้รหัสแถบเป็นสื่อกลาง โดยก่อนที่จะมีการส่งเข้าระบบแยก เราจะทำการตีรหัสแทนที่อยู่ปลายทางลงบนตัวจดหมายก่อน จากนั้นส่วนต่าง ๆ ในระบบแยกจดหมายก็จะอาศัยการอ่านรหัส ซึ่งสามารถทำได้อย่างง่ายดาย และแม่นยำในการแยกแยะจดหมายต่อไป
ในปัจจุบัน รหัสแถบนี้มีบทบาทอย่างมากในการประยุกต์ใช้ เพื่อการบ่งบอกวัตถุอย่างอัตโนมัติ (Automatic Identification) สืบเนื่องจากเทคนิคและอุปกรณ์สำหรับการ recognize รหัสแถบนี้อยู่ในขั้นปฏิบัติการได้อย่างแน่นอนแล้ว ซึ่งผิดกับการ Identification ด้วยภาพหรือเสียงที่ยังต้องค้นคว้าปรับปรุงกันอีกมาก
หลักการอ่านรหัสแถบ
สำหรับการอ่านรหัสแถบ เขาใช้หลักการที่ว่า พื้นสว่างจะสะท้อนได้มากกว่าพื้นมืด ดังนั้นเมื่อตัวอ่านถูกกวาดไปบนรหัสแถบ ลำแสงที่ถูกปล่อยออกมาจากหัวอ่านจะสะท้อนกลับมาหรือน้อยก็ขึ้นอยู่กับว่า มันได้ตกกระทบแถบขาวหรือแถบดำ แสงสะท้อนกลับเหล่านี้จะถูกดัดแปลงเป็นสัญญาณไฟฟ้า โดย Photodiode ที่ติดอยู่ที่หัวอ่าน องค์ประกอบสำคัญของตัวอ่านรหัสแถบก็คือ ขนาดของลำแสงที่ส่งออกมานั้น จะต้องสัมพันธ์กับความละเอียด (resolution) ของแถบ กล่าวคือ ขนาดของมันจะต้องไม่ใหญ่กว่าความกว้างของแถบดำหรือแถบขาวที่แคบที่สุด ในทางปฏิบัติเขาใช้จุดลำแสงที่มีขนาดเส้นผ่าศูนย์กลางประมาณ 0.2 มม.
ส่วนสำคัญอีกส่วนหนึ่งก็คือความยาวคลื่นของแสงที่ใช้ ซึ่งขึ้นกับว่าจะใช้อ่านรหัสแถบสีอะไร โดยทั่วไปเขาใช้แสงอินฟราเรด (Infrared) ที่มีความยาวคลื่นประมาณ 0.95 ไมครอน (micron) สำหรับอ่านแถบขาวดำ และใช้แสงสีแดงที่มีความยาวคลื่น 0.65 ถึง 0.7 ไมครอน สำหรับอ่านรหัสแถบสีเขียวหรือสีน้ำเงินที่พิมพ์บนพื้นสีเหลืองหรือส้ม
ลักษณะของรหัส
ในการอธิบายลักษณะของรหัสนั้น เขาจะใช้พารามิเตอร์อยู่สองสามตัว กล่าวคือ สิ่งแรก ดูว่ารหัสแถบนั้นเป็นชนิด NRZ (Not Return to Zero) หรือว่าชนิดโมดูเลชัน (Modulation) ด้วยความกว้าง ในกรณีที่เป็น NRZ การรักษาระดับลอจิค (logic) ไม่จำเป็นต้องเปลี่ยนระดับสัญญาณ กล่าวคือ ถ้าแถบขาวแทนเลข 0 เราสามารถจะแทนเลข 0 หลายตัวที่อยู่ติดกันได้ด้วยแถบขาวยาว โดยไม่ต้องมีแถบดำสลับกันไป แต่ในกรณีที่รหัสเป็นแบบโมดูเลชันด้วยความกว้างนั้น เราจะกำหนดเอาว่า 1 คือ แถบขาวหรือแถบดำที่กว้าง และ 0 คือ แถบขาวหรือแถบดำที่แคบ ดังนั้นการแทนตัวเลขสองตัวที่เหมือนกันและอยู่ติดกัน จึงต้องมีการ "สับเปลี่ยน" ตัวอย่างเช่น เลข 0 สองตัวติดกันจะต้องแทนด้วยแถบขาวและแถบดำ ไม่ใช่แถบดำหรือแถบขาวสองแถบติดกัน เพราะจะทำให้กลายเป็นการแทนเลข 1 หนึ่งตัว ซึ่งไม่ใช่เลข 0 สองตัวตามที่ต้องการไป เรายังมักเรียกรหัสแถบชนิดโมดูเลขันตามความกว้างว่าเป็นรหัสสองระดับ (แคบ/กว้าง)
สิ่งที่สองที่เราพูดกันก็คือ รหัสนั้นเป็นชนิดต่อเนื่องหรือไม่ต่อเนื่อง (Discrete) กล่าวคือ ในชนิดไม่ต่อเนื่องจะมีการแทรกช่องว่าง (เปรียบได้กับการเว้นวรรค) ระหว่างตัวอักษร ดังนั้นรหัสแถบชนิดนี้จะกินเนื้อที่มาก เพื่อเปรียบเทียบการกินเนื้อที่มากน้อย เขาจึงได้นิยามความหนาแน่นของรหัสขึ้น โดยให้มันเท่ากับ จำนวนอักษรต่อความยาวหนึ่งหน่วย (นิ้วหรือ ซม.) ความหนาแน่นนี้จะขึ้นด้วยตรงกับความกว้างของแถบขาวและแถบดำ ทั้งชนิดกว้างและชนิดแคบ พื้นที่ที่เป็นอักษรควบคุม (control character) และช่องไฟระหว่างอักษร
โดยทั่วไปแล้ว สำหรับรหัสที่มีความหนาแน่นสูง ความกว้างของแถบขาวหรือดำจะต่ำกว่า 0.009 นิ้ว (0.23 มม.) ซึ่งจะให้ความหนาแน่นของตัวอักษรสูงกว่า 8 ตัวอักษรต่อนิ้วโดยทั่วไป และสำหรับความหนาแน่นขนาดกลาง ความกว้างของแถบดำหรือแบบขาวจะอยู่ระหว่าง 0.009 นิ้ว ถึง 0.020 นิ้ว (0.23 มม. ถึง 0.50 มม.) ให้ความหนาแน่นอยู่ระหว่าง 4 ถึง 8 ตัวอักษรต่อนิ้ว และสุดท้ายสำหรับกรณีความหนาแน่นต่ำกว่า 4 ตัวอักษรต่อนิ้ว
ความแม่นยำในการอ่านรหัส
สำหรับพารามิเตอร์ต่อไปนั้นเกี่ยวข้องกับความแม่นยำแน่นอนในการอ่านรหัส ซึ่งได้แก่ ความละเอียด, ความแตกต่างของความเข้ม (Contrast) และความไม่สมบูรณ์ของแถบรหัส ความละเอียดนั้นจะหมายถึง ขีดความสามารถของตัวอ่านในการอ่านแถบดำหรือแถบขาวที่แคบที่สุด ดังได้กล่าวไปแล้วว่า ขึ้นอยู่กับขนาดของจุดลำแสงที่ตัวอ่านใช้สำหรับความแตกต่างของความเข้มนั้น เราวัดจาก C เท่ากับ พลังงานที่สะท้อนจากแถบสว่าง ลบ พลังงานที่สะท้อนจากแถบมืด หารด้วย พลังงานที่สะท้อนจากแถบสว่าง ซึ่ง C นี้ไม่ควรต่ำกว่า 0.7 สุดท้ายความไม่สมบูรณ์ของแถบรหัส มักจะเกิดจากความบกพร่องของการพิมพ์ ซึ่งอาจทำให้เกิดการบิดเบี้ยวของแถบ, ความกว้างของแถบไม่แน่นอน หรือความคมชัดไม่ดีพอ เป็นต้น จึงจำเป็นที่เราจะต้องเลือกเครื่องพิมพ์ให้เหมาะสมกับงานและรหัสที่ใช้
ความหลากหลายของรหัส
นอกจากนี้ รหัสยังมีลักษณะอื่นที่แตกต่างกันอีกเช่น เป็นรหัสแทนตัวเลข หรือรหัสแทนทั้งตัวเลขและตัวอักษร ความยาวของแถบรหัสคงที่หรือแปรเปลี่ยนได้ เป็นต้น การเลือกใช้นั้นก็ขึ้นอยู่กับลักษณะงาน โดยเราจะพิจารณาเลือกรหัสจากชุดตัวอักษรที่รหัสสามารถแทนได้ ความยากง่ายในการใส่รหัส ความแม่นยำของรหัส ความยืดหยุ่นต่อความเร็วที่ใช้ในการอ่าน และความต้านทานต่อความไม่สมบูรณ์ในการพิมพ์ เป็นต้น อย่างไรก็ตามรหัสที่ใช้กันแพร่หลายในปัจจุบันเห็นจะได้แก่ UPC (Universal Product Code), EAN (European Artich number), Codebar, "2 ใน 5" และรหัส 39
รหัส EAN/UPC
        รหัส EAN/UPC เป็นรหัสแทนตัวเลขเท่านั้น แถบรหัสหนึ่งประกอบด้วยเลข 8 ตัว หรือ 13 ตัว แต่ขนาด 13 ตัวเป็นแบบที่ใช้กันแพร่หลายมากที่สุด แถบรหัสจะขึ้นต้นและลงท้ายด้วยรหัส 101 เสมอ ตัวเลข 13 หลักนี้จะถูกแบ่งเป็นสามส่วน ส่วนแรกประกอบด้วยเลข 2 ตัว ซึ่งบ่งบอกประเทศ ส่วนที่สองประกอบด้วยเลข 4 ตัว บ่งบอกผู้ผลิตและส่วนสุดท้าย ซึ่งแยกจากส่วนที่สองโดยมีรหัส 01010 เป็นตัวคั่นนั้น จะบ่งบอกรหัสตัวสินค้า รหัสแต่ละตัวจะใช้แถบ 7 แถบ แต่ละแถบมีความกว้างตายตัวเท่ากัน โดยแถบดำคือ 1 และแถบขาวคือ 0 รหัส EAN/UPC นี้เป็นรหัสที่ใช้กับสินค้าอุปโภคบริโภค และเป็นที่ใช้กันแพร่หลายทั่วโลก
 สำหรับรหัส "2 ใน 5" ซึ่งตามความเป็นมาแล้ว เป็นรหัสชนิดแรกที่ถูกใช้อย่างเป็นกิจจะลักษณะ หนึ่งตัวรหัสจะประกอบด้วยแถบห้าแถบ ซึ่งสองในจำนวนนี้จะมีลักษณะผิดแผกจากที่เหลือ ซึ่งเราจะได้เห็นกันต่อไป รหัสในตระกูลนี้ได้แก่ "2 ใน 5 อุตสาหกรรม", "2 ใน 5 แมทริกซ์" และ "2 ใน 5 สอดแทรก" ทั้งหมดเป็นรหัสแทนตัวเลข
        รหัส "2 ใน 5 อุตสาหกรรม" นั้น แถบรหัสหนึ่งจะมีความยาวระหว่าง 1 ถึง 32 ตัว ในรหัสชนิดนี้แถบดำเท่านั้นที่ถือเป็นองค์ประกอบของแถบรหัส โดยแถบดำแคบถือเป็น 0 และแถบดำกว้างถือเป็น 1 รหัส "2 ใน 5 อุตสาหกรรม" นี้ เป็นรหัสที่ง่ายต่อการพิมพ์ แต่ว่าขาดความแน่นอนในการอ่าน ดังนั้นจึงมีการเติมเอาอักษรควบคุมที่ท้ายแถบรหัส รหัสชนิดนี้ใช้กันแพร่หลายในโรงงานอุตสาหกรรมต่าง ๆ บนตั๋วเครื่องบิน และเครื่องแยกจดหมาย
        สำหรับรหัส "2 ใน 5 แมทริกซ์" นั้น แถบดำและแถบขาวล้วนถือเป็นองค์ประกอบของรหัส หนึ่งตัวรหัสประกอบด้วยสามแถบดำและสองแถบขาว ระหว่างรหัสแต่ละตัวจะมีช่องไฟคั่น แถบรหัสจะขึ้นต้นและลงท้ายด้วยรหัส 10000 เสมอ การถือเอาแถบขาว ซึ่งก็คือ พื้นที่ที่ใช้ในการพิมพ์รหัสเข้าเป็นส่วนหนึ่งของรหัส ทำให้รหัสชนิดนี้กินเนื้อที่น้อยกว่ารหัสชนิดแรก จาก 28 ถึง 33 เปอร์เซ็นต์ ข้อเสียคือความต้านทานต่อความผิดพลาดจะลดต่ำลง
        รหัส "2 ใน 5 สอดแทรก" นั้น อาจถือได้ว่าเป็นรหัสที่น่าสนใจที่สุดในรหัสตระกูลนี้ ในรหัสชนิดนี้แถบดำและขาวล้วนถือเป็นองค์ประกอบของรหัสเช่นเดียวกับ "2 ใน 5 แมทริกซ์" แต่จะไม่มีช่องไฟระหว่างรหัส และการใส่รหัสนั้นจะทำในลักษณะ "สอดแทรก" คือ อักษรตัวแรกจะถูกใส่รหัสด้วยรหัส "2 ใน 5 อุตสาหกรรม" โดยใช้แถบดำเป็นตัวประกอบ แต่ตัวอักษรตัวต่อมาจะถูกใส่รหัสด้วย "2 ใน 5 อุตสาหกรรม" ที่ใช้คราวนี้แถบขาวเป็นตัวประกอบ แถบขาวที่ได้มีห้าแถบด้วยกัน คือแบ่งเป็นสองแถบกว้างและสามแถบแคบ ซึ่งจะถูกแทรกเข้าสลับกับแถบดำห้าแถบที่ได้จากการใส่รหัสตัวอักษรแรก แถบรหัสของ "2 ใน 5 สอดแทรก" นี้จะขึ้นต้นด้วยรหัส 0000 และลงท้ายด้วยรหัส 100 เมื่อเทียบกับรหัส "2 ใน 5 อุตสาหกรรม" รหัสชนิดนี้ให้ความหนาแน่นมากกว่าจาก 36 ถึง 42 เปอร์เซ็นต์ และจาก 10 ถึง 12 เปอร์เซ็นต์ เมื่อเทียบกับรหัส "2 ใน 5 แมทริกซ์" มันจึงเป็นที่ใช้กันอย่างแพร่หลายในวงการอุตสาหกรรม
รหัส 39
        รหัส 39 เป็นรหัสชนิดแรกที่ใช้แทนตัวอักษรด้วย ปัจจุบันได้มีรหัสซึ่งขยายจากรหัส 39 แล้ว คือ รหัส 128 รหัส 39 นั้น ประกอบด้วยสัญลักษณ์ 43 ตัว (เดิม 39 ตัว) ซึ่งแบ่งเป็นพยัญชนะ 26 ตัว ตัวเลข 10 ตัว และอักษรพิเศษที่เหลือรหัส 39 นี้สามารถถือเป็นรหัส "3 ใน 9) เพราะหนึ่งตัวรหัสประกอบด้วย 9 ตัวประกอบ โดยสามตัวในนั้นจะเป็นแถบกว้าง และอีกสองตัวจะเป็นแถบแคบ หนึ่งแถบรหัสจะมีหนึ่งถึงสามตัวอักษรเท่านั้นซึ่งตามด้วย Check digit ดังนั้นรหัส 39 จึงมีความแน่นอนในการอ่านสูง แต่เปลืองเนื้อที่ รหัสชนิดนี้มีใช้กันมากในอุตสาหกรรมอิเล็คทรอนิค โดยใช้ในการแยกชนิดแผงวงจร
Codabar
        Codabar เป็นรหัสสำหรับตัวเลขและมีความยาวของแถบรหัสจาก 1 ถึง 32 ตัว เป็นรหัสที่ใช้ในธนาคารเลือดของสหรัฐอเมริกา และในอุตสาหกรรมยาและทางการแพทย์ หนึ่งตัวรหัสประกอบด้วย 7 บิท ซึ่งแบ่งเป็น 4 แถบดำ และ 3 แถบขาว แถบดำหรือขาวที่แคบแทน 0 และแถบดำหรือขาวกว้างแทน 1
รหัสในตระกูลอื่น
        นอกเหนือจากรหัสที่กล่าวแล้ว ยังมีรหัสอื่น ๆ ที่เราสามารถพบเห็นได้ เพียงแต่ว่าไม่เป็นที่แพร่หลายเท่าพวกแรกเท่านั้น รหัสเหล่านี้ได้แก่ รหัส 128, รหัส "2 ใน 7" และรหัส 11
        รหัส 128 เป็นรหัสที่ใหม่มาก มันประกอบด้วยชุดตัวอักษร 128 ตัวของแอสกี (ASCII) รหัสชนิดนี้เป็นรหัสต่อเนื่องและให้ความแน่นอนในการอ่านสูงมาก ส่วนรหัส "2 ใน 7" เป็นรหัสชนิดโมดูเลชัน ตามความกว้างสำหรับแทนตัวเลขและอักษรพิเศษ 6 ตัว คือ $-: /. และ + ความกว้างของแถบในรหัสชนิดนี้ไม่ได้ถูกกำหนดไว้เพียงขนาดเดียว แต่มีถึง 18 ขนาดให้เลือกใช้ สามารถให้ความหนาแน่นได้ถึง 11 ตัวอักษรต่อนิ้ว แต่ว่ามีกฎเกณฑ์ที่ซับซ้อนจึงไม่เป็นที่นิยมใช้กันมากนัก และสุดท้ายรหัส 11 เป็นรหัสตัวเลขเช่นกัน มีลักษณะใกล้เคียงกับรหัส "2 ใน 5 แมทริกซ์" หนึ่งรหัสประกอบด้วย 3 แถบดำ และ 2 แถบขาว
        รหัส 11 นี้ให้ความหนาแน่นสูงมาก เนื่องจากว่ามีการออกแบบให้สัดส่วนของแถบกว้างต่อแถบแคบดีที่สุดในแต่ละรหัส แต่ผลก็คือความซับซ้อนซึ่งทำให้สู้แบบ "2 ใน 5" ไม่ได้
เครื่องอ่านบัตรจะทำหน้าที่อ่านข้อมูลบนบัตร แล้วเปลี่ยนให้เป็นสัญญาณไฟฟ้าส่งเข้าเครื่องคอมพิวเตอร์ โดยอ่านเป็นเลขฐานสองที่มี 12 บิต (จาก 12 แถวบนบัตร) แล้วเปลี่ยนให้เป็นเลขฐานสองที่มี 6 หรือ 8 บิต (ตามแบบของคอมพิวเตอร์ที่ใช้) เครื่องอ่านบัตรมีสองแบบ คือ แบบใช้แปรงโลหะ และ แบบใช้หลอดโฟโตอิเล็กทริก (photoelectric)
ในเครื่องอ่านบัตรแบบใช้แปรง บัตรจะเคลื่อนออกจากที่เก็บโดยวิธีทางกล ผ่านเข้าไปใต้แปรงโลหะที่ทำหน้าที่เหมือนสะพานไฟฟ้า เมื่อมีรูบนบัตรเคลื่อนมาถึงแปรง แปรงก็จะสามารถลอดผ่านไปแตะกับลูกกลิ้งโลหะข้างล่างทำให้มีกระแสไฟฟ้าไหลผ่านและเกิดเป็นสัญญาณไฟฟ้าขึ้น การอ่านจะกระทำสองครั้งเพื่อตรวจสอบความถูกต้อง แล้วบัตรจะเคลื่อนผ่านไปยังที่เก็บ หากผลการอ่านสองครั้งไม่ตรงกัน เครื่องอ่านบัตรจะรายงานความผิดพลาด
ในทำนองเดียวกันเครื่องอ่านบัตรที่ใช้โฟโตอิเล็กทริกเซลล์ ซึ่งทำงานโดยให้บัตรเคลื่อนผ่านแสงไฟ ถ้าที่ใดมีรูเจาะไว้ก็จะมีแสงลอดมาถูกโฟโตอิเล็กทริกเซลล์ เซลล์หนึ่งสำหรับแถวดิ่งหนึ่งแถว ครั้นแล้วจะมีสัญญาณไฟฟ้าเกิดขึ้นแต่สามารถทำงานได้รวดเร็วกว่าแบบแรก เครื่องอ่านบัตรโดยทั่ว ๆ ไปจะมีความเร็วตั้งแต่ 200-1,200 บัตรต่อนาที
บัตรคอมพิวเตอร์มีหลายชนิด ชนิดที่รู้จักกันมากคือ บัตรฮอลเอลริท เป็นบัตรที่ ดร.เฮอร์แมน ฮอลเลอริท ประดิษฐ์ขึ้นใน พ.ศ.2432 และได้นำออกใช้เป็นครั้งแรกในการทำสำมะโนประชากรของสหรัฐอเมริกาใน พ.ศ.2433 บัตรนี้ทำด้วยกระดาษพิเศษเป็นรูปสี่เหลี่ยมผืนผ้ามีขนาดกว้าง คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/card/1_4.gif นิ้ว ยาว คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/card/1_8.gif นิ้ว และหนา 0.007 นิ้ว มีมุมบนถูกตัดทิ้งเฉียง ที่มุมใดมุมหนึ่งบนบัตรมีตำแหน่งเตรียมไว้ให้เจาะรู โดยมีแถวในแนวดิ่ง 80 แถว และแถวในแนวนอน 12 แถว จากแถวบนตามแนวนอนลงมาแถวล่างเรียงตามลำดับเรียกแถว 12 แถว 11 และแถว 0-9
ข้อมูลที่บันทึกไว้บนบัตรจะเจาะรูเป็นรหัสเพื่อแทนข้อมูล 3 แบบ คือ ตัวเลขฐานสิบ (0-9) ตัวอักษร (A-Z) และเครื่องหมายต่าง ๆ (เช่น &, ), (, -, +, ?,…….) เช่น ถ้าเราต้องการบันทึกอักษร M เราก็ใช้เครื่องเจาะหนึ่งรูที่แถว 11 และอีกหนึ่งรูที่แถว 4 ในแนวดิ่งเดียวกัน
ข้อดีของบัตรคอมพิวเตอร์คือ เป็นการง่ายในการเตรียมและเก็บ แต่มีข้อเสียคือ เปลืองที่เก็บ เมื่อถูกความชื้นบัตรจะพอง และเมื่อเจาะข้อมูลลงในบัตรแล้วไม่สามารถเจาะข้อมูลใหม่ลงในที่เดิมได้ จึงไม่เป็นที่นิยมใช้ในปัจจุบัน
เครื่องเจาะบัตรโดยใช้คอมพิวเตอร์ (key punch)

เป็นเครื่องเจาะบัตรที่ทำงานด้วยการควบคุมของเครืองคอมพิวเตอร์ คือเมื่อต้องการเจาะบัตรเราจะต้องสั่งเครื่องคอมพิวเตอร์ให้เจาะให้ โดยเครื่องจะส่งสัญญาณไฟฟ้าไปบังคับให้กลไกสำหรับเจาะ เจาะบัตรเป็นรูเล็ก ๆ รูปสี่เหลี่ยมตามตำแหน่ง ต่าง ๆ บนบัตรตามคำสั่ง แล้วบัตรจะเคลื่อนผ่านเครื่องตรวจสอบเพื่อตรวจสอบข้อมูลเทียบกับข่าวสารเดิม ครั้นแล้วจะนำไปเก็บไว้ในที่เก็บบัตร โดยทั่วไป เครื่องสามารถเจาะบัตรด้วยอัตราเร็วประมาณ 100-300 บัตรต่อนาที
การทำงานของคอมพิวเตอร์ ใช้หลักการเก็บคำสั่งไว้ที่หน่วยความจำ ซีพียูอ่านคำสั่งจากหน่วยความจำมาแปลความหมายและกระทำตามเรียงกันไปทีละคำสั่ง หน้าที่หลักของซีพียู คือควบคุมการทำงานของคอมพิวเตอร์ทั้งระบบ ตลอดจนทำการประมวลผล
กลไกการทำงานของซีพียู มีความสลับซับซ้อน ผู้พัฒนาซีพียูได้สร้างกลไกให้ทำงานได้ดีขึ้น โดยแบ่งการทำงานเป็นส่วน ๆ มีการทำงานแบบขนาน และทำงานเหลื่อมกันเพื่อให้ทำงานได้เร็วขึ้น
การพัฒนาซีพียก้าวหน้าอย่างรวดเร็ว และถูกพัฒนาให้อยู่ในรูปไมโครชิบที่เรียกว่าไมโครโพรเซสเซอร์ ไมโครโพรเซสเซอร์จึงเป็นหัวใจหลักของระบบคอมพิวเตอร์ตั้งแต่ซูเปอร์คอมพิวเตอร์ถึงไมโครคอมพิวเตอร์ ล้วนแล้วแต่ใช้ไมโครชิปเป็นซีพียูหลัก ในเมนเฟรมคอมพิวเตอร์ เช่น ES9000 ของบริษัทไอบีเอ็มก็ใช้ไมโครชิปเป็นซีพียู แต่อาจจะมีมากกว่าหนึ่งชิปประกอบรวมเป็นซีพียู
เทคโนโลยีไมโครโพรเซสเซอร์ได้พัฒนาอย่างรวดเร็ว โดยเริ่มจากปี พ.ศ. 2518 บริษัทอินเทลได้พัฒนาไมโครโพรเซสเซอร์ที่เป็นที่รู้จักกันดีคือ ไมโครโพรเซสเซอร์เบอร์ 8080 ซึ่งเป็นซีพียูขนาด 8 บิต ซีพียูรุ่นนี้จะรับข้อมูลเข้ามาประมวลผลด้วยตัวเลขฐานสองครั้งละ 8 บิต และทำงานภายใต้ระบบปฎิบัติการซีพีเอ็ม (CP/M) ต่อมาบริษัทแอปเปิ้ลก็เลือกซีพียู 6502 ของบริษัทมอสเทคมาผลิตเป็นเครื่องแอปเปิ้ลทู ได้รับความนิยมเป็นอย่างมากในยุคนั้น
เครื่องไมโครคอมพิวเตอร์ในประเทศไทยส่วนมากเป็นคอมพิวเตอร์ที่ใช้ซีพียูของตระกูลอินเทลที่พัฒนามาจาก 8088 8086 80286 80386 80486 และเพนเตียม ตามลำดับ
การพัฒนาซีพียูตระกูลนี้เริ่มจาก ซีพียูเบอร์ 8088 ต่อมาประมาณปี พ.ศ. 2524 มีการพัฒนาเป็นซีพียูแบบ 16 บิต ที่มีการรับข้อมูลจากภายนอกทีละ 8 บิต แต่การประมวลผลบวกลบคูณหารภายในจะกระทำทีละ 16 บิต บริษัทไอบีเอ็มเลือกซีพียูตัวนี้เพราะอุปกรณ์ประกอบอื่น ๆ ในสมัยนั้นยังเป็นระบบ 8 บิต คอมพิวเตอร์รุ่นซีพียู 8088 แบบ 16 บิตนี้เรียกว่า พีซี และเป็นพีซีรุ่นแรก
ขีดความสามารถของซีพียูที่จะต้องพิจารณา นอกจากขีดความสามารถในการประมวลผลภายใน การับส่งข้อมูลระหว่างซีพียูกับอุปกรณ์ภายนอกแล้ว ยังต้องพิจารณาขีดความสามารถในการเข้าไปเขียนอ่านในหน่วยความจำด้วย ซีพียู 8088 สามารถเขียนอ่านในหน่วยความจำได้สูงสุดเพียง 1 เมกะไบต์ (ประมาณหนึ่งล้านไบต์) ซึ่งถือว่ามากในขณะนั้น
ความเร็วของการทำงานของซีพียูขึ้นอยู่กับการให้จังหวะที่เรียกว่า สัญญาณนาฬิกาซีพียู 8088 ถูกกำหนดจังหวะด้วยสัญญาณนาฬิกาที่มีความเร็ว 4.77 ล้านรอบใบ 1 วินาทีหรือที่เรียกว่า 4.77 เมกะเฮิรตซ์ (MHz) ซึ่งปัจจุบันถูกพัฒนาให้เร็วขึ้นเป็นลำดับ
ไมโครคอมพิวเตอร์รุ่นพีซีได้รับการพัฒนาเพิ่มเติมฮาร์ดดิสก์ลงไปและปรับปรุงซอฟต์แวร์ระบบและเรียกชื่อรุ่นว่า พีซีเอ็กซ์ที (PC-XT)
ในพ.ศ. 2527 ไอบีเอ็มเสนอไมโครคอมพิวเตอร์รุ่นใหม่ที่ทำงานได้ดีกว่าเดิม โดยใช้ชื่อรุ่นว่า พีซีเอที (PC-AT) คอมพิวเตอร์รุ่นนี้ใช้ซีพียูเบอร์ 80286 ทำงานที่ความเร็วสูงขึ้นคือ 6 เมกะเฮิรตซ์
การทำงานของซีพียู 80286 ดีกว่าเดิมมาก เพราะรับส่งข้อมูลกับอุปกรณ์ภายในเป็นแบบ 16 บิตเต็ม การประมวลผลก็เป็นแบบ 16 บิต ทำงานด้วยความเร็วของจังหวะสัญญาณนาฬิกาสูงกว่า และยังติดต่อเขียนอ่านกับหน่วยความจำได้มากกว่า คือ ติดต่อได้สูงสุด 16 เมกะไบต์ หรือ 16 เท่าของคอมพิวเตอร์รุ่นพีซี
พัฒนาการของเครื่องพีซีเอทีทำให้ผู้ผลิตอื่นออกแบบเครื่องคอมพิวเตอร์ตามอย่างไอบีเอ็มโดยเพิ่มขีดความสามารถเฉพาะของตนเองเข้าไปอีก เช่น ใช้สัญญาณนาฬิกาสูงเป็น 8 เมกะเฮริตซ์ 10 เมกะเฮิรตซ์ จนถึง 16 เมกะเฮิรตซ์ ไมโครคอมพิวเตอร์บนรากฐานของพีซีเอทีจึงมีผู้ใช้กันทั่วโลก ยุคนี้จึงเป็นยุคที่ไมโครคอมพิวเตอร์แพร่หลายอย่างเต็มที่
ในพ.ศ. 2529 บริษัทอินเทลประกาศตัวซีพียูรุ่นใหม่ คือ 80386 หลายบริษัทรวมทั้งบริษัทไอบีเอ็มเร่งพัฒนาโดยนำเอาซีพียู 80386 มาเป็นซีพียูหลักของระบบ ซีพียู 80386 เพิ่มเติมขีดความสามารถอีกมาก เช่น รับส่งข้อมูลครั้งละ 32 บิต ประมวลผลครั้งละ 32 บิต ติอต่อกับหน่วยความจำได้มากถึง 4 จิกะไบต์ (1 จิกะไบต์เท่ากับ 1024 บ้านไบต์) จังหวะสัญญาณนาฬิกาเพิ่มได้สูงถึง 33 เมกะเฮิรตซ์ ขีดความสามารถสูงกว่าพีซีรุ่นเดิมมาก และใน พ.ศ. 2530 บริษัทไอบีเอ็มเริ่มประกาศขายไมโครคอมพิวเตอร์รุ่นใหม่ที่ชื่อว่า พีเอสทู (PS/2) โดยมีโครงสร้างทางฮาร์ดแวร์ของระบบแตกต่างออกไปโดยเฉพาะระบบเส้นทางส่งถ่ายข้อมูลภายใน (bus)
ผลปรากฎว่า เครื่องคอมพิวเตอร์รุ่น 80386 ไม่เป็นที่นิยมมากนัก ทั้งนี้เพราะยุคเริ่มต้นของเครื่องคอมพิวเตอร์ 80386 มีราคาแพงมาก ดังนั้นในพ.ศ. 2531 อินเทลต้องเอาใจลูกค้าในกลุ่มเอทีเดิม คือลดขีดความสามารถของ 80386 ลงให้เหลือเพียง 80386SX
ซีพียู 80386SX ใช้กับโครงสร้างเครื่องพีซีเอทีเดิมได้พอดีโดยแทบไม่ต้องดัดแปลงอะไร ทั้งนี้เพราะโครงสร้างภายในซีพียูเป็นแบบ 80386 แต่โครงสร้างการติดต่อกับอุปกรณ์ภายนอกใช้เส้นทางเพียงแค่ 16 บิต ไมโครคอมพิวเตอร์ 80386SX  จึงเป็นที่นิยมเพราะมีราคาถูกและสามารถทดแทนเครื่องคอมพิวเตอร์รุ่นพีซีเอทีได้
ซีพียู 80486 เป็นพัฒนาการของอินเทลใน พ.ศ. 2532 และเริ่มใช้กับเครื่องไมโครคอมพิวเตอร์ในปีต่อมา ความจริงแล้วซีพียู 80486 ไม่มีข้อเด่นอะไรมากนัก เพียงแต่ใช้เทคโนโลยีการรวมชิป 80387 เข้ากับซีพียู 80386 ซึ่งชิป 80387 เป็นหน่วยคำนวณทางคณิตศาสตร์ และรวมเอาส่วนจัดการหน่วยความจำเข้าไว้ในชิป ทำให้การทำงานโดยรวมรวดเร็วขึ้นอีก
ในพ.ศ. 2535 อินเทลได้ผลิตซีพียูตัวใหม่ที่มีขีดความสามารถสูงขึ้น ชื่อว่า เพนเตียม การผลิตไมโครคอมพิวเตอร์จึงได้เปลี่ยนมาใช้ซีพียูเพนเตียม ซึ่งเป็นซีพียูที่มีขีดความสามารถเชิงคำนวณสูงกว่าซีพียู 80486 มีความซับซ้อนกว่าเดิม และใช้ระบบการส่งถ่ายข้อมูลได้ถึง 64 บิต
การพัฒนาทางด้านซีพียูเป็นไปอย่างต่อเนื่อง ไมโครโพรเซสเซอร์รุ่นใหม่จะมีโครงสร้างที่ซับซ้อนยิ่งขึ้น ใช้งานได้ดีมากขึ้น และจะเป็นซีพียูในรุ่นที่ 6 ของบริษัทอินเทล โดยมีชื่อว่า เพนเตียมทู
ส่วนควบคุม (Control Unit)


ส่วนควบคุมทำหน้าที่ควบคุมการทำงานส่วนต่าง ๆ ของเครื่องคอมพิวเตอร์ซึ่งขึ้นอยู่กับการออกแบบ เช่น วิธีการทำงานของสัญญาณตามแบบอนุกรมหรือแบบขนานชนิดของส่วนความจำ ชนิดของส่วนรับงานและแสดงผล ฯลฯ ให้ทำงานประสานกัน และถูกต้องตามขั้นตอนที่ได้รับคำสั่งมา คำสั่งนี้จะอยู่กับข้อมูลที่ใช้ประมวลผลในส่วนความจำตามตำแหน่งต่าง ๆ ที่ต้องระบุให้ถูกต้องเหมือนกับเลขที่บ้านของเราทั่ว ๆ ไป เรียกว่า "แอดเดรส" (address)
สมมติว่าเราเลือกใช้คำสั่งคำหนึ่งประกอบด้วย 18 บิต 6 บิตแรกเป็นคำสั่งให้เครื่องทำ เช่น บวก ลบ คูณ หาร อ่าน พิมพ์ หยุด ฯลฯ เรียกว่า "รหัสคำสั่ง" (operation code = op code) 3 บิตต่อมาจัดไว้เพื่อใช้กับลักษณะการทำงานพิเศษ และ 9 บิตสุดท้ายเป็นข้อมูลที่ใช้ประมวลผลหรือเป็น

แอดเดรสก็ได้ เรียกว่า ออเพอแรนด์ (operand)
โดยพื้นฐานทั่วไป ส่วนควบคุมจะทำงานเป็น 2 จังหวะ คือ จังหวะแรก รับคำสั่ง (fetch) จังหวะที่สองปฎิบัติ (execute)
1. รับคำสั่ง ในจังหวะแรกนี้ ชุดคำสั่งจะถูกดึงจากส่วนความจำเข้าสู่ส่วนควบคุมแล้วแยกออกเป็นสองส่วน คือ ส่วนที่เป็นรหัสคำสั่ง จะแยกไปยังส่วนที่มีชื่อเรียกว่า วงจรสร้างสัญญาณ (decoder) เพื่อเตรียมทำงานในจังหวะที่สอง และส่วนที่เป็นออเพอแรนด์ จะแยกออกไปยังวงจรอีกส่วนหนึ่ง เพื่อปฎิบัติให้เสร็จสิ้นในจังหวะแรกแล้วเตรียมพร้อมที่จะทำงานในจังหวะต่อไปเมื่อได้รับสัญญาณควบคุมส่งมาบังคับ
2. ปฎิบัติ เมื่อจังหวะแรกได้เสร็จสิ้นไปแล้ว วงจรควบคุมจะสร้างสัญญาณขึ้นเพื่อส่งไปควบคุมส่วนต่าง ๆ ของเครื่องคอมพิวเตอร์ตามรหัสคำสั่งที่ได้รับมา เช่น การบวก ลบ คูณ หาร หรือย้ายข้อมูล เครื่องคอมพิวเตอร์หลายแบบใช้วงจรควบคุมที่เป็นวงจรอิเล็กทรอนิกส์ที่สร้างเสร็จเรียบร้อยติดไว้ในเครื่อง เครื่องคำนวณ จะเก็บสัญญาณควบคุมเหล่านี้ไว้ในส่วนความจำพิเศษที่เรียกว่า รอม (ROM) 
ส่วนคำนวณ (Arithmetic logic Unit)


ส่วนคำนวณเป็นส่วนประมวลผล ซึ่งนับว่าเป็นส่วนที่สำคัญที่สุด หรือ "หัวใจ" ของเครื่องคอมพิวเตอร์ ส่วนคำนวณทำหน้าที่ใหญ่ ๆ สองประการ คือ ประการแรกทำการบวก ลบ คูณ และหาร ประการที่สองคือ ทำหน้าที่ตัดสินใจว่าข้อมูลส่วนใหญ่หรือเล็กกว่าอีกข้อมูลหนึ่ง หน้าที่ทั้งสองประการนี้สามารถปฎิบัติการเป็นผลสำเร็จได้โดยอาศัยวงจรตรรกอันเป็นวงจรอิเล็กทรอนิกส์ จึงทำให้ส่วนคำนวณนี้มีชื่อเรียกอีกอย่างหนึ่งว่า ส่วนคำนวณตรรก (arithmetic logic unit; ALU) นอกจากนี้ ส่วนคำนวณสามารถเลื่อนข้อมูลไปทางซ้าย หรือทางขวา เก็บหรือย้ายข้อมูลไปยังส่วนอื่น ๆ ของส่วนควบคุมกลางได้
วงจรตรรก (logic circuits) เป็นวงจรทางอิเล็กทรอนิกส์ที่ใช้ส่วนประกอบ เช่น ตัวความต้านทาน ตัวเก็บประจุ ไดโอด ทรานซิสเตอร์ ฯลฯ มาจัดให้สามารถทำงานแทนการคำนวณทางตรรกได้ โดยใช้ "การมีสัญญาณไฟฟ้า" และ "ไม่มีสัญญาณไฟฟ้า" แทนสภาวะตรรก "จริง" และ "เท็จ" หรือ "1" กับ

"0" ทำให้สามารถสร้างวงจรขึ้นได้ 2 ชนิดใหญ่ ๆ คือ
1. วงจรตรรกจัดหมู่ (combination logic) เป็นวงจรที่ให้สัญญาณผลลัพธ์ขึ้นอยู่กับสภาวะของสัญญาณป้อนเข้าเท่านั้น วงจรนี้จึงไม่สามารถเก็บสัญญาณไว้ได้ หรือ วงจรนี้ไม่มีความจำ เช่น
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/purpin.gifวงจรอินเวอร์เทอร์ หรืออินเวอร์เทอร์เกต (inverter circuit หรือ inverter gate) คือ วงจรที่ทำหน้าที่กลับสภาวะตรรก "1" ให้เป็น  "0" หรือจาก  "0" ให้เป็น "1"
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/purpin.gifเกต "หรือ" (Or gate) เป็นวงจรที่ทำหน้าที่แทนปฎิบัติการทางตรรก "หรือ" วงจรนี้มีสัญญาณเข้า (input) ตั้งแต่สองจุดขึ้นไป แต่มีสัญญาณออก (output) หนึ่งจุด

เกต "และ" (And gate) เป็นวงจรที่ทำหน้าที่แทนปฎิบัติการทางตรรก "และ" วงจรนี้มีสัญญาณเข้าตั้งแต่สองจุดขึ้นไป และมีสัญญาณออกหนึ่งจุด
2. วงจรตรรกจัดลำดับ (sequential logic) เป็นวงจรที่มีสัญญาณผลลัพธ์ขึ้นอยู่กับสัญญาณป้อนเข้า และขึ้นอยู่กับสภาวะเดิมของสัญญาณผลลัพธ์ด้วย วงจรนี้มีคุณสมบัติที่สามารถเก็บสัญญาณ หรือความจำไว้ได้ แต่เมื่อเลิกทำงาน ปิดไฟฟ้าที่ไปเลี้ยงวงจรเหล่านี้ สัญญาณหรือความจำจะสูญหายไป เช่น วงจรฟลิปฟล็อป (flip-flop) วงจรนับ (counter) วงจรชิฟต์รีจิสเตอร์ (shift register)
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/purpin.gifวงจรบวก คือวงจรที่ทำหน้าที่บวกเลขฐานสอง โดยอาศัยวงจรตรรกเข้ามาประกอบเป็นวงจรบวกครึ่ง (half adder; H.A.) ซึ่งจะให้ผลบวก S และการทดออก Co ดังตาราง

เมื่อนำเอาวงจรบวกครึ่งสองวงจรกับเกต "หรือ" หนึ่งวงจรมารวมกันเป็นวงจรบวกเต็ม โดยมีการทดเข้า ทดออก และผลบวก
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/purpin.gifวงจรลบ เป็นวงจรที่ทำหน้าที่คล้ายวงจรบวก โดยใช้วงจรอินเวอร์เทอร์เข้าเปลี่ยนเลขตัวลบให้เป็นตัวประสม 1 (1's complement) คือเปลี่ยนเลข "0" เป็น "1" หรือ "0" เป็น "0" แล้วนำเข้าบวกกับตัวตั้ง เราก็จะได้ผลลบตามต้องการ
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/purpin.gifวงจรคูณและหาร การคูณสามารถทำได้ด้วยการบวกซ้ำ ๆ กัน และการหารสามารถทำได้ด้วยการลบซ้ำ ๆ กัน ดังนั้น การคูณก็คือ การจัดให้วงจรบวกทำการบวกซ้ำ ๆ กัน ส่วนการหารก็คือการจัดให้วงจรลบทำการลบซ้ำ นอกจากหลักการดังกล่าวแล้ว อาจจะใช้อีกหลักการหนึ่งคือ การคูณหารบางประเภทสามารถทำได้โดยการเลื่อนจุดไปทางซ้ายหรือขวา เช่น 256.741 X 100 = 25674.1 หรือ 256.741 / 100 =2.56741 เป็นต้น ส่วนเลขฐานสองที่คอมพิวเตอร์ใช้ก็ทำได้ในทำนองเดียวกัน
เครื่องคอมพิวเตอร์ทุกเครื่องต้องอาศัยหน่วยความจำหลักเพื่อใช้เก็บข้อมูลและคำสั่งซีพียูมีการทำงานเป็นวงรอบโดยการคำสั่งจากหน่วยความจำหลักมาแปลความหมายแล้วกระทำตาม เมื่อทำเสร็จก็จะนำผลลัพธ์มาเก็บในหน่วยคำจำหลัก ซีพียูจะกระทำตามขั้นตอนเช่นนี้เรื่อย ๆ ไปอย่างรวดเร็ว เรียกการทำงานลักษณะนี้ว่า วงรอบของคำสั่ง
จากการทำงานเป็นวงรอบของซีพียูนี้เอง การอ่างเขียนข้อมูลลงในหน่วยความจำหลักจะต้องทำได้รวดเร็ว เพื่อให้ทันการทำงานของซีพียู โดยปกติถ้าให้ซีพียูทำงานความถี่ของสัญญาณนาฬิกา 33 เมกะเฮิรตซ์ หน่วยความจำหลักที่ใช้ทั่วไปมักจะมีความเร็วไม่ทัน ดังนั้นกลไกของซีพียูจึงต้องชะลอความเร็วลงด้วยการสร้างภาวะรอ (wait state) การเลือกซื้อไมโครคอมพิวเตอร์จึงต้องพิจารณาดูว่ามีภาวะรอในการทำงานด้วยหรือไม่
หน่วยความจำหลักที่ใช้กับไมโครคอมพิวเตอร์จึงต้องกำหนดคุณลักษณะ ในเรื่องช่วงเวลาเข้าถึงข้อมูล (access time) ค่าที่ใช้ทั่วไปอยู่ในช่วงประมาณ 60 นาโนวินาที ถึง 125 นาโนวินาที ( 1 นาโนวินาทีเท่ากับ 10-9 วินาที) แต่อย่างไรก็ตาม มีการพัฒนาให้หน่วยความจำสามารถใช้กับซีพียูที่ทำงานเร็วขนาด 33 เมกะเฮิรตซ์ ได้ โดยการสร้างหน่วยความจำพิเศษมาคั่นกลางไว้ ซึ่งเรียกว่า หน่วยความจำแคช (cache memory) ซึ่งเป็นหน่วยความจำที่เพิ่มเข้ามาเพื่อนำชุดคำสั่ง หรือข้อมูลจากหน่วยความจำหลักมาเก็บไว้ก่อน เพื่อให้ซีพียูเรียกใช้ได้เร็วขึ้น
การแบ่งประเภทหน่วยความจำหลัก ถ้าแบ่งตามลักษณะการเก็บข้อมูล กล่าวคือถ้าเป็นหน่วยความจำที่เก็บข้อมูลไว้แล้ว หากไฟฟ้าดับ คือไม่มีไฟฟ้าจ่ายให้กับวงจรหน่วยความจำ ข้อมูลที่เก็บไว้จะหายไปหมด เรียกหน่วยความจำประเภทนี้ว่า หน่วยความจำแบบลบเลือนได้ (volatile memory) แต่ถ้าหน่วยความจำเก็บข้อมูลได้โดยไม่ขึ้นกับไฟฟ้าที่เลี้ยงวงจร ก็เรียกว่า หน่วยความจำไม่ลบเลือน (nonvolatile memory)
แต่โดยทั่วไปการแบ่งประเภทของหน่วยความจำจะแบ่งตามสภาพการใช้งาน เช่น ถ้าเป็นหน่วยความจำที่เขียนหรืออ่านข้อมูลได้ การเขียนหรืออ่านจะเลือกที่ตำแหน่งใดก็ได้ เราเรียกหน่วยความจำประเภทนี้ว่าแรม (Random Access Memory: RAM) แรมเป็นหน่วยความจำแบบลบเลือนได้ และหากเป็นหน่วยความจำที่ซีพียูอ่านได้อย่างเดียว ไม่สามารถเขียนลงไปได้ ก็เรียกว่า รอม (Read Only Memory : ROM) รอมจึงเป็นหน่วยความจำที่เก็บข้อมูลหรือโปรแกรมไว้ถาวร เช่นเก็บโปรแกรมควบคุมการจัดการพื้นฐานของระบบไมโครคอมพิวเตอร์ (bios) รอมส่วนใหญ่เป็นหน่วยความจำไม่ลบเลือนแต่อาจยอมให้ผู้พัฒนาระบบลบข้อมูลและเขียนข้อมูลลงไปใหม่ได้ การลบข้อมูลนี้ต้องทำด้วยกรรมวิธีพิเศษ เช่น ใช้แสงอุลตราไวโลเล็ตฉายลงบนผิวซิลิกอน หน่วยความจำประเภทนี้มักจะมีช่องกระจกใสสำหรับฉายแสงขณะลบ และขณะใช้งานจะมีแผ่นกระดาษทึบปิดทับไว้ เรียกหน่วยความจำประเภทนี้ว่า อีพร็อม (Erasable Programmable Read Only Memory : EPROM)
ROM (Read-OnlyMemory)

          คือหน่วยความจำชนิดหนึ่ง ที่มีโปรแกรม หรือข้อมูลอยู่แล้ว และพร้อมที่จะนำมาต่อกับ ไมโครโปรเซสเซอร์ได้โดยตรง ซึ่งโปรแกรม หรือข้อมูลนั้นจะไม่สูญหายไป
          แม้ว่าจะไม่มีการจ่ายไฟเลี้ยงให้แก่ระบบ ข้อมูลที่เก็บอยู่ใน ROM จะสามารถอ่านออกมาได้ แต่ไม่สามารถเขียนข้อมูลเข้าไปได้ เว้นแต่จะใช้วิธีการพิเศษซึ่งขึ้นกับชนิดของ ROM
ชนิดของROM
    • Manual ROM

ROM (READ-ONLY MEMORY)
          ข้อมูลทั้งหมดที่อยู่ใน ROM จะถูกโปรแกรม โดยผู้ผลิต (โปรแกรม มาจากโรงงาน) เราจะใช้ ROM ชนิดนี้ เมื่อข้อมูลนั้น ไม่มีการเปลี่ยนแปลง และมีความต้องการใช้งาน เป็นจำนวนมาก ผู้ใช้ไม่สามารถ เปลี่ยนแปลงข้อมูลภายใน ROM ได้
         โดย ROM จะมีการใช้ technology ที่แตกต่างกันตัวอย่างเช่น BIPOLAR, CMOS, NMOS, PMOS
 
    • PROM (Programmable ROM)

PROM (PROGRAMMABLE READ-ONLY MEMORY)
        ข้อมูลที่ต้องการโปรแกรมจะถูกโปรแกรมโดยผู้ใช้เอง โดยป้อนพัลส์แรงดันสูง (HIGH VOLTAGE PULSED) ทำให้ METAL STRIPS หรือ POLYCRYSTALINE SILICON ที่อยู่ในตัว IC ขาดออกจากกัน ทำให้เกิดเป็นลอจิก “1” หรือ “0” ตามตำแหน่ง ที่กำหนดในหน่วยความจำนั้นๆ เมื่อ PROM ถูกโปรแกรมแล้ว ข้อมูลภายใน จะไม่สามารถเปลี่ยนแปลงได้อีก หน่วยความจำชนิดนี้ จะใช้ในงานที่ใช้ความเร็วสูง ซึ่งความเร็วสูงกว่า หน่วยความจำ ที่โปรแกรมได้ชนิดอื่นๆ
    • EPROM (Erasable Programmable ROM)

EPROM (ERASABLE PROGRAMMABLE READ-ONLY MEMORY)
        ข้อมูลจะถูกโปรแกรม โดยผู้ใช้โดยการให้สัญญาณ ที่มีแรงดันสูง (HIGH VOLTAGE SIGNAL) ผ่านเข้าไปในตัว EPROM ซึ่งเป็นวิธีเดียวกับที่ใช้ใน PROM แต่ข้อมูลที่อยู่ใน EPROM เปลี่ยนแปลงได้ โดยการลบข้อมูลเดิมที่อยู่ใน EPROM ออกก่อน แล้วค่อยโปรแกรมเข้าไปใหม่ การลบข้อมูลนี้ทำได้ด้วย การฉายแสง อุลตร้าไวโอเลตเข้าไปในตัว IC โดยผ่าน ทางกระจกใส ที่อยู่บนตัว IC เมื่อฉายแสง ครู่หนึ่ง (ประมาณ 5-10 นาที) ข้อมูลที่อยู่ภายใน ก็จะถูกลบทิ้ง ซึ่งช่วงเวลา ที่ฉายแสงนี้ สามารถดูได้จากข้อมูล ที่กำหนด (DATA SHEET) มากับตัว EPROM และ มีความเหมาะสม ที่จะใช้ เมื่องานของระบบ มีโอกาส ที่จะปรับปรุงแก้ไขข้อมูลใหม่
    • EAROM (Electrically Alterable ROM)

EAROM (ELECTRICALLY ALTERABLE READ-ONLY MEMORY)
          EAROM หรืออีกชื่อหนึ่งว่า EEPROM (ELECTRICAL ERASABLE EPROM) เนื่องจากมีการใช้ไฟฟ้าในการลบข้อมูลใน ROM เพื่อเขียนใหม่ ซึ่งใช้เวลาสั้นกว่าของ EPROM
         การลบขึ้นอยู่กับพื้นฐานการใช้เทคโนโลยีที่แตกต่างกัน ดังนั้น EAROM (ELECTRICAL ALTERABLE ROM) จะอยู่บนพื้นฐานของเทคโนโลยีแบบ NMOS ข้อมูลจะถูกโปรแกรมโดยผู้ใช้เหมือนใน EPROM แต่สิ่งที่แตกต่างก็คือ ข้อมูลของ EAROM สามารถลบได้โดยทางไฟฟ้าไม่ใช่โดยการฉายแสงแบบ EPROM
          โดยทั่วไปจะใช้ EPROM เพราะเราสามารถหามาใช้ และทดลองได้ง่าย มีราคาถูก วงจรต่อง่าย ไม่ยุ่งยาก และสามารถเปลี่ยนแปลงโปรแกรมได้ นอกจากระบบ ที่ทำเป็นการค้าจำนวนมาก จึงจะใช้ ROM ประเภทโปรแกรมสำเร็จ
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom7.gif
          จากรูปแสดงให้เห็นส่วนประกอบพื้นฐานของ ROM ซึ่งจะมีสัญญาณต่างๆ ที่เกี่ยวข้องกับ ROM และทุกชิปที่อยู่ใน ROM มักมีการจัดแบ่งแยกหน้าที่เสมอ เช่น ขาแอดเดรสของ ROM เป็นอินพุต ส่วนขาข้อมูลจะเป็นเอาต์พุต โดยหลักการแล้ว ขาข้อมูลจะต่อเข้ากับบัสข้อมูลซึ่งเป็นบัส 2 ทาง ดังนั้นเอาต์พุตของ ROM ในส่วนขาข้อมูลนี้มักจะเป็นลอจิก 3 สถานะ ซึ่งถ้าไม่ใช้ก็จะอยู่ในสถานะ ที่มีอิมพีแดนซ์สูง (High Impedence)
          ลักษณะโครงสร้างภายในของข้อมูลในหน่วยความจำ สามารถดูได้จาก Data Sheet ของ ROM นั้นๆ เช่น ROM ที่ระบุเป็น 1024 8 ,2048 8 หรือ 4096 8 ตัวเลขชุดแรก (1024 ,2048 หรือ 4096) จะบอกจำนวนตำแหน่ง ที่ใช้เก็บข้อมูลภายใน ส่วนตัวเลขชุดที่สอง (8) เป็นตัวบอกจำนวนบิตของข้อมูลแบบขนาน ที่อ่านจาก ROM
          ในการกำหนดจำนวนเส้นของบัสแอดเดรสที่ใช้กับ ROM เราสามารถรู้ได้ด้วยสูตร
 
2= จำนวนแอดเดรสที่อ้างถึง
                             เช่น 2x = 4096 จะได้ x = 12 ซึ่งก็คือ จำนวนเส้นบัสแอดเดรสนั่นเอง
ขั้นตอนการอ่านข้อมูลจาก ROM
        1. CPU จะส่งแอดเดรสไปให้ ROM แอดเดรสดังกล่าวจะปรากฏ เป็นแอดเดรสที่ต้องการอ่าน ใน ROM โดยข้อมูลจะถูกอ่านออกมาเพียงครั้งละ 1 ไบต์เท่านั้น
        2. CPU จะต้องให้ช่วงเวลาของการส่งแอดเดรสยาวนานพอประมาณ (Wait State) เรียกว่า Access Time โดยปกติต้องประมาณ 100-300 นาโนวินาที ขึ้นกับชนิดของ ROM ซึ่ง ROM จะใช้เวลานั้นในการถอดรหัสแอดเดรส ของข้อมูลที่ต้องการจะอ่านออกมาที่เอาท์พุทของ ROM ซึ่งถ้าใช้เวลาเร็วกว่านั้น ROM จะตอบสนองไม่ทัน
        3. CPU จะส่งสัญญาณไปทำการเลือก ROM เรียกว่า สัญญาณ /CS (Chip Select) เพื่อบอกว่าต้องการเลือก ROM ซึ่งเป็นการส่งสัญญาณเพื่อยืนยันการเลือกชิปนั่นเอง
        4. ข้อมูลจะผ่านออกทางขาข้อมูลชั่วขณะจังหวะการเลือกชิป และเมื่อขาการเลือกชิปไม่แอคตีฟ ข้อมูลก็จะเข้าสู่ภาวะที่มีอิมพีแดนซ์สูง
        ลักษณะดังกล่าว สามารถเขียนเป็นแผนผังเวลาออกมาได้ ดังแสดงในรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom8.jpg
การต่อกับบัสของ Z-80
          ในการต่อกับบัสของ Z-80 นั้น สามารถเชื่อมโยงกันโดยตรงได้ เพราะ Z-80 แยกบัสข้อมูล และบัสแอดเดรสออกจากกัน ดังแสดงในรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom9.jpg
          จากรูป เป็นการนำเอา ROM เบอร์ 2716 มาต่อกับ Z-80 โดยใช้แอดเดรสจาก CPU ต่อกับ ROM โดยตรง และบัสข้อมูลก็ต่อถึงกันโดยตรง ในที่นี้จะยังไม่มีการถอดรหัสแอดเดรส สังเกตว่าในขณะนี้ยังไม่มี การต่อสายสัญญาณ /CE ซึ่งปกติต้องมาจาก CPU แต่จะกล่าวถึงเฉพาะวิธีการถอดรหัสเพื่อต่อกับ สัญญาณ /CE นี้เท่านั้น
การกำหนดแอดเดรส
          ปกติ Z-80 จะมีสัญญาณแอดเดรสจำนวน 16 สาย โดยใช้ชื่อสัญญาณเป็นแอดเดรส A0-A15 ซึ่งหมายถึง การอ้างแอดเดรสได้ 216 หรือ 65536 ตำแหน่ง แต่ ROM เบอร์ 2716 มีแอดเดรสเพียง 11 สาย นั่นหมายถึง ความจุของหน่วยความจำ มีเพียง 2 กิโลไบต์ หรือ 2048 ตำแหน่งเท่านั้น ดังนั้นการต่อ 2 กิโลไบต์ ลงใน 64 กิโลไบต์จะต้องกำหนดว่า 2 กิโลไบต์ที่ต่อนี้ อยู่ ณ ที่ใดในส่วนของพื้นที่ทั้งหมด 64 กิโลไบต์ของ Z-80 ซึ่งถ้าจะต่อให้ครบทั้ง 64 กิโลไบต์ ต้องใช้ ROM ถึง 32 ตัว
          ในการต่อ ROM นั้น เรามักให้ ROM เริ่มที่แอดเดรส 0000H ทั้งนี้เพราะเมื่อเริ่มทำการรีเซต Z-80จะเริ่มทำงานที่แอดเดรสนี้ ดังนั้นเมื่อเปิดเครื่องจะทำให้ Z-80 มีโปรแกรมและพร้อมที่จะรัน (run) จึงต้องนำ ROM มาใส่ที่แอดเดรสกลุ่มล่างสุดนี้ สำหรับการกำหนดพื้นที่ของหน่วยความจำเพื่อการใช้งานนั้น สามารถแสดงได้ดังรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom10.jpg
          จากรูป เป็นการกำหนดพื้นที่ของหน่วยความจำ RAM และ ROM เพื่อการใช้งาน โดยสมมติให้ ROM ที่จะต่อนี้มีทั้งสิ้น 4 ตัว คือ ROMA, ROMB, ROMC และ ROMD โดยในขั้นแรกจะต่อเฉพาะ ROMA และ ROMB ส่วน RAM ที่ใช้จะต่อเป็น RAMA และ RAMB
การเลือกชิปของ ROM
          เมื่อต่อ ROM เข้าสู่ระบบ เราจะต้องหาวิธีในการเลือกชิปของ ROM ให้ถูกต้องตามแอดเดรสที่เรากำหนด ไว้ เช่น ROMA เรากำหนดแอดเดรสไว้ที่แอดเดรส 0000H - 07FFH ดังนั้นเราจำเป็นต้องมีตัวถอดรหัสเพื่อเลือก แอดเดรสให้ถูกต้อง การถอดรหัสนี้เราจะใช้แอดเดรสส่วนบนที่เหลือมาทำการถอดรหัส ในที่นี้เราจะใช้ 74LS138 และทำการเลือกโดยใช้ A11, A12, A13, A14 และ A15 การถอดรหัสของ 74LS138 นี้เป็นการเลือกจาก 3 บิตไปเป็น 8 บิตโดยใช้อินพุต A, B, C วงจรการถอดรหัสนี้แสดงได้ดังรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom11.jpg
          ด้วยวิธีนี้จะเห็นว่า ถ้าเราเลือกแอดเดรสจาก A10 - A15 จะมีสัญญาณจาก A0 - A10 ส่งไปยังแอดเดรสของ ROM โดยตรง ส่วน A11 - A 15 จะผ่านการถอดรหัสก่อน แล้วจึงไปทำการเลือกชิปใน ROM ตามที่เราต้องการ เพื่อให้เห็นขั้นตอนการถอดรหัสชัดเจนขึ้น เราควรพิจารณาขั้นตอนการทำงานของ 74LS138 โดยเขียนออกมาเป็นตารางแอดเดรส ดังแสดงในตาราง
          จากตารางนี้ เราจะเน้นเฉพาะส่วนของแอดเดรส A11 - A15 ซึ่งจะส่งค่ารวมของแอดเดรสเพื่อออกไปยังขาเอาต์พุตขาที่ 10-15 เช่น ถ้าแอดเดรส A11 - A15 เป็นลอจิก ‘ 0 ‘ หมด ขาที่ 15 ซึ่งเป็นเอาต์พุตจะแอคตีฟ เพิ่อทำการเลือกชิป และจากตารางจะพบว่า ในช่วงระหว่างแอดเดรส 0000H-07FFH ขาที่ 15 ของ 74LS138 จะแอคตีฟ ดังนั้น 74LS138 จึงเป็นวงจรถอดรหัสที่ใช้ในการเลือกชิป ROM ได้อย่างถูกต้อง
สัญญาณการอ่านข้อมูล
          สำหรับการอ่านข้อมูลจากหน่วยความจำนั้น Z-80 จะต้องใช้สัญญาณทีเกี่ยวข้องหลายสัญญาณ เช่น สัญญาณ /MREQ กับสัญญาณ /RD สัญญาณทั้งสองจะต้องเกิดขึ้นพร้อมกัน ดังนั้นเมื่อเป็นเช่นนี้ จึงต้องเอาสัญญาณทั้งสองนี้ออร์ (OR) กันเพื่อให้ได้สัญญาณ /MEMR การกำหนดจังหวะการอ่านหน่วยความจำ แสดงได้ดังรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom12.jpg
การต่อ Z-80 กับสัญญาณ /CS ของ ROM
          การเลือก ROM ในจังหวะการอ่านนี้ ซีพียูต้องกำหนดได้ว่าจะเลือกแอดเดรสกลุ่มใด และจังหวะการเลือกนั้นจะต้องตรงกับการอ่านพอดี ดังนั้นจึงต้องนำเอาสัญญาณ /MEMR และสัญญาณเลือก ROMA มาทำการ OR กันอีกครั้ง เพื่อจะเลือก ROM ได้อย่างถูกต้อง วงจรที่ต่อ ROM แบบสมบูรณ์ในกรณีนี้แสดงได้ดังรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom13.jpg
          จากรูปจะเห็นว่า สัญญาณจากซีพียูที่เข้าไปทำการควบคุม ROM จะประกอบด้วยสัญญาณ จากหลายส่วนซึ่งได้แก่ สัญญาณแอดเดรส A0-A15 โดยสัญญาณ A11-A15 จะสร้างสัญญาณใหม่เป็น สัญญาณ ROMA เพื่อเลือก ROM จากนั้นจะใช้สัญญาณ /MREQ กับสัญญาณ /RD สร้างสัญญาณ /MEMR และสร้างเป็นสัญญาณ /CE ต่อไป โดยประกอบกันเป็นขั้นตอนดังแสดงในรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom14.jpg
การต่อ Z-80 กับ ROM อีกวิธีหนึ่ง
          สังเกตว่า ROM เบอร์ 2716 มีขา /CE และ /OE ซึ่งอาจจะนำขาสัญญาณเลือกเอาต์พุตนี้ มาใช้ประโยชน์ได้ การเลือก ROM เบอร์ 2716 นี้จะใช้ /CE และ /OE ในการเลือก โดยขาทั้งสอง จะเป็นลอจิก“0” ในการเลือกชิป และเลือกเอาต์พุตโดยทำการเปิดเกตลอจิก 3 สถานะนั่นเอง เมื่อเป็นเช่นนี้ เราสามารถลดจำนวนเกตแบบออร์ (or gate) ลงไป 1 ตัวได้ โดยแทนที่จะใช้สัญญาณ /MEMR และสัญญาณ ROMA มา OR กัน เราก็เชื่อมต่อโดยการใช้สัญญาณ /MEMR ต่อกับสัญญาณ /OE และสัญญาณ ROMA ต่อกับสัญญาณ /CE ดังแสดงในรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom15.jpg
การต่อ ROM หลายๆชิบ
          หากต้องการจะต่อ ROM หลายๆชิป เช่น ROMA,ROMB,ROMC และ ROMD ก็สามารถต่อเพิ่มได้ โดยใช้สัญญาณเลือกจาก 74LS138 และ /MEMR มาเลือกโดยผ่านทาง /CE และ /OE ได้ ดังแสดงในรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom16.jpg
การใช้ ROM ในชิปที่มีความจุเพิ่มขึ้น
          ROM ที่ใช้ในปัจจุบันมีความจุสูงขึ้นมาก EPROM บางตัวมีความจุถึง 32 กิโลไบต์ เช่น EPROM ที่ใข้กันมากในขณะนี้ ได้แก่ เบอร์ 2764 (มีความจุ 8 กิโลไบต์) เบอร์ 27128 (มีความจุ 16 กิโลไบต์) ดังนั้นหากต้องการใช้ ROM ในชิปที่มีความจุเพิ่มขึ้นก็ทำได้ โดยใช้หลักการเช่นเดียวกัน ในที่นี้ขอให้ดูการจัดขาของ EPROM เบอร์ 2732 เมื่อเปรียบเทียบกับเบอร์ 2764 ซึ่งสามารถแสดงได้ดังรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom17.jpg
          EPROM เบอร์ 2732 มีจำนวนขาเท่ากับเบอร์ 2764 ดังนั้นการเพิ่มความจุจะกระทำได้โดยง่าย และสามารถใช้ซ็อกเกต (socket) เดิมได้ทันที หรือเพียงแต่แก้ขาแอดเดรสเพียงเส้นเดียว สังเกตว่าขาที่แตกต่างกันในที่นี้คือ EPROM เบอร์ 2764 ได้เพิ่มเติมอีก 4 ขา โดยเพิ่มส่วนบนเป็น A12 และขา PGM มาอยู่ที่ขา 27 ส่วนขา 26 ไม่ใช้ ความแตกต่างนี้เองทำให้การเพิ่มเติมลายวงจรทำได้ง่ายขึ้น โดยการต่อจากขา 26 มาที่ขา 28 เพื่อต่อสาย Vcc ดังแสดงในรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom18.jpg
          เมื่อจะต่อกับ EPROM เบอร์ 2732 เราสามารถขยายระบบโดยใช้ขาแอดเดรสของ EPROM เบอร์ 2732 จากแอดเดรส A0- A11ดังนั้นส่วนที่จะขยายจากซีพียู เราใช้ 74LS42 โดยนำแอดเดรส A12- A15 มาถอดรหัสดังแสดงในรูป
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/rom19.jpg



RAM (Random Access Memory) 

คือหน่วยความจำที่มีการเข้าถึงได้ โดยไม่ต้องใส่ลำดับ (Sequential Access) ต้องการข้อมูล ที่ตำแหน่งใดก็ได้ โดยส่ง Address (ตัวเลขระบุตำแหน่ง) ให้กับ RAM Memory Chip ที่ใช้กันในเครื่องพีซีแบ่งได้เป็น 2 ประเภทใหญ่ๆ ได้แก่
                1.SRAM(Static RAM)
                2.DRAM(Dynamic RAM)
คุณสมบัติที่แตกต่างกัน ระหว่าง SRAM กับ DRAM คือ SRAM มีราคาสูงกว่า เนื่องจาก SRAM มี ความเร็วสูงกว่า DRAM
การใช้งาน RAM นั้น ต้องมีไฟเลี้ยงตลอดเวลา และนอกจากไฟเลี้ยงแล้ว DRAM ยังต้องการ การ Refresh ข้อมูลเป็นระยะๆ เสมือนการเตือนความทรงจำ ซึ่ง ผิดกับ SRAM ที่ไม่ต้องมีการ Refresh เนื่องจาก DRAM ซึ่งทำมาจาก MOSใช้หลักการ ของตัวเก็บประจุ มาเก็บข้อมูล เมื่อเวลาผ่านไป ประจุจะค่อยๆรั่วออก ทำให้ต้องมีการ Refresh ประจุตลอดเวลาการใช้งาน ส่วน SRAM ซึ่งทำมาจาก Flip-Flop นั้น ไม่จำเป็นต้องมีการ Refresh แต่ SRAM จะกินไฟมากกว่า DRAM อันเนื่องจากการใช้ Flip-Flop นั่นเอง
ความเร็วของ RAM คิดกันอย่างไร
ที่ตัว Memorychip จะมี เลขรหัส เช่น HM411000-70 ตัวเลขหลัง (-) คือ ตัวเลขที่บอก ความเร็วของ RAM ตัวเลขนี้ เรียกว่า Accesstime คือ เวลาที่เสียไป ในการที่จะเข้าถึงข้อมูล หรือ เวลาที่แสดงว่า ข้อมูลจะถูก ส่งออกไปทาง Data busได้เร็วแค่ไหน ยิ่ง Access time น้อยๆ แสดงว่า RAM ตัวนั้น เร็วมาก
ตารางค่า Access time บน Chip
Access time(ns) 
ตัวเลขที่พบบน Memory chip
250 
25
200
20
150
15 
120
12
100
10
85 
85
80 
8,80
70
7,70
65
65
60
6,60
53
53
ความเร็วของ RAM เรียกว่า Cycle time ซึ่งมีหน่วยเป็น ns โดย Cycle time เท่ากับ Read/Write cycle time (เวลาที่ในการส่งสัญญาณติดต่อ ว่าจะอ่าน/เขียน RAM) รวมกับ Access time และ Refresh time
โดยทั่วไป RAM จะต้องทำการตอบสนอง CPU ได้ในเวลา 2 clock cycle หรือ 2 คาบ หาก RAM ตอบสนองไม่ทัน RAM จะส่งสัญญาณ /WAIT บอก CPU ให้ คอย คือ การที่ CPU เพิ่ม clock cycle ซึ่งช่วงเวลานี้เรียกว่า WAIT STATE
วิธีที่ใช้ในการแก้ไข WAIT STATE
    1. เทคนิค INTERLEAVE
                เทคนิคนี้เป็นการลดปัญหาเรื่อง Refresh time เพราะในการทำงานของ RAM จะเห็นว่าใน การติดต่อกับ Memory 1 address จะใช้เวลา 1 cycle time ในการที่ CPU ติดต่อ กับ Memory ในแต่ละครั้ง จะติดต่อเป็น block คือ หลาย Address เรียงต่อกัน จากความจริง ข้อนี้ เทคนิคการ Interleave จึงเกิดขึ้น โดยหลักการที่จะทำให้ Cycle time เหลื่อมกันเกิดจน Cycle time ใหม่ที่แคบลง
                การสลับ Bank ของ Memory โดย Bank บล็อกหนึ่งจะมี Memory address เป็นเลขคี่ อีก Bank จะเป็นเลขคู่ เวลา CPU ติดต่อสลับไปสลับมาใน 2 Bank เพราะฉะนั้นต้องใส่ Memory ให้เต็ม Bank เป็นจำนวนคู่ เช่น 2 Bank หรือ 4 Bank ถ้า Memory ขนาดเท่ากัน คนที่ใส่ Memory ทั้งหมดไว้ใน Bank เดียว จะทำงานได้ช้ากว่า คนที่แบ่ง Memory ใส่เป็น 2 Bank แต่ Bank ก็จะ เหลือน้อยด้วย
    2. วิธีการ Page Mode
                วิธีการนี้จะต้องใช้ RAM พิเศษ คือ Paged RAM โดย Memory จะถูกมองว่า แบ่ง เป็นกลุ่ม หรือ Page หลาย Page ในการติดต่อกับ Memory ที่ Address อยู่ใน Page เดียวกัน ต่อๆ ไป โดยไม่ต้องมี Wait State แต่ถ้ามีการติดต่อกับ Page อื่น จะมี Wait State เหมือนเดิม
    3. Cache Memory Memory
                ส่วนนี้จะถูกรวมกับ CPU ซึ่งก็คือ Internal Cache แต่ถ้าเอามาติดบนเมนบอร์ด จะเรียกว่า External Cache ก็คือ RAM นั่นเอง แต่ความเร็วจะสูงมาก ทำให้ไม่มีภาวะ Wait State วิธีการก็คือ พยายามให้ CPU ติดต่อกับ Cache ซึ่งเป็น SRAM ความเร็วสูงก่อน เพราะ ไม่มีภาวะ WaitState โดยจะมีวงจร Cache controller ซึ่งเป็น ตัวจัดการ Cache โดยมันจะตัด บล็อกข้อมูลจาก main memory ประมาณบล็อกละ 2-4 KB มาใส่ไว้ใน Cache พอ CPU ติดต่อ Memory ก็จะมาดูใน Cache ก่อนว่ามีข้อมูลที่ต้องการหรือไม่ ถ้าไม่มีก็จะไปเอาจาก Main memory ความสำคัญของ Cache คือ การตัดบล็อกมาให้ถูกตามความต้องการของ CPU โดย Cache controller จะใช้วิธีการ Random แต่ Random อย่างมีหลักการ คือ CPU มักต้องการ ข้อมูลที่ต่อเนื่องกัน เพราะฉะนั้น Cache จะตัดข้อมูลบล็อกถัดไปมาเก็บไว้ การ Random แบบนี้ให้ความแม่นยำถึง 80% ทีเดียว คือ ไม่มีภาวะ Wait State เป็นเวลา 80% ของเวลาที่ใช้ ทำงานทั้งหมด
การ Check Parity
        การเช็ค Parity เป็นการ เพิ่มบิตพิเศษเข้าไปอีก 1 บิต ให้กับทุกๆ 8 บิต ของข้อมูล จนกลายเป็น 9 บิต บิตที่เพิ่มขึ้นไม่ใช่ข้อมูล แต่ใส่เพื่อตรวจสอบว่า ข้อมูลมีความผิดพลาดหรือไม่ โดยใช้หลักการนับขำนวนบิตข้อมูลที่มีค่าเป็น 1 ในทุกๆ 8 บิต การเข็ค Parity นี้แบ่งได้ 2 วิธี คือ Odd Parity (Parity คี่) และ Even Parity (Parityคู่)
        สำหรับวิธี Odd Parity จะทำการนับจำนวนบิตที่เป็น 1 ใน 8 บิตว่ามีจำนวนเป็นคู่ หรือเป็นคี่ โดยมี IC 74LS280 ทำหน้าที่เป็นตัวสร้าง Parity และ เป็นตัวตรวจสอบ ถ้า 74LS280 นับจำนวน 1 ใน 8 บิตได้ เป็นจำนวนคู่ที่ Parity bit จะถูกเซ็ตให้เป็น 1 เพื่อให้จำนวนของ 1 ใน 9 บิต (รวม Parity bit ด้วย) เป็นจำนวนคี่ แต่ถ้านับจำนวนของ 1 ใน 8 บิต ได้เป็นเลขคี่ Parity bit จะถูกเซ็ตให้เป็น 0 เพื่อให้จำนวนของ 1ใน 9 บิต รวมเป็นเลขคี่ ถ้าวิธ ีEven Parity ก็จะทำใน ทางกลับกัน คือพยายามเซ็ต Parity ให้จำนวนของ 1 ใน 9 บิตเป็นจำนวนคู่
        Parity bit จะถูกสร้างตอน เขียนข้อมูลลงใน RAM และจะถูกตรวจสอบ เมื่อมีการ อ่านข้อมูลจาก RAM เช่น ถ้าข้อมูลเป็น 11001010 ด้วยวิธี Odd Parity จะ เซ็ต Parity bit เป็น 1 แต่ถ้าตอนอ่านข้อมูลเกิดการเปลี่ยนแปลงเป็น 10001010 โดย Odd Parity ยังคงเป็น 1 ก็จะแสดง ว่ามีการผิดพลาดเกิดขึ้น IC 74LS280 จะทำการสร้างสัญญาณไปบอกให้ CPU เกิดการ Halt และแสดงข้อความรายงานทางหน้าจอในแบบต่างๆ เช่น PARITY ERROR SYSTEM HALT
        ข้อเสียของการใช้ Parity bit คือ เสียเวลา และไม่ได้ประโยชน์เท่าไรนัก เพราะไม่ สามารถบอกได้ว่าผิดที่ตำแหน่งไหน และแก้ไขข้อผิดพลาดไม่ได้ บอกได้แค่ว่ามีความผิดพลาด เกิดขึ้นเท่านั้น ยิ่งกว่านั้น ถ้าสมมติ ข้อมูลเกิดผิดพลาดทีเดียว 2 บิต เช่น 10001001 เปลี่ยนเป็น 10101011 เราก็ไม่สามารถเช็คข้อผิดพลาดโดยใช้วิธี Parity ได้
        เมื่อรู้การทำงานของ RAM แล้ว เราก็จะมาดู ประเภทของ RAM ที่มีใช้กันอยู่
        1. DIP (Dual In-line Package) เป็นแบบพื้นฐานที่ใช้กัน เพราะ DIP คือ RAM ที่อยู่ในรูปแบบของ IC (Integrate Circuit ) หรือ Memory chip การใช้งาน หรือติดตั้ง RAM ชนิดนี้ทำได้โดยการติดลงบน ซ็อคเก็ตของ DIP เท่าที่เมนบอร์ดเตรียมไว้ให้ นั่นหมายความว่า ยิ่งความต้องการติด DIP มากๆ เมนบอร์ดก็ต้องมีซ็อคเก็ตไว้ให้มากๆ ผลก็คือ ใช้พื้นที่เปลือง และทำให้เมนบอร์ดใหญ่มาก ในการติด DIP ยังต้องระมัดระวังด้วย เพราะ Pin บอบบาง งอง่าย หักง่าย ทั้งยัง เสียเวลาในการติด
         2. SIPP (Single In-line Pin Package) จะลดความยุ่งยากของการติดตั้ง RAM แบบ DIP ลง โดยติดลงบนแผ่น PCB (Printed Circuit Board) ซะก่อน SIPP เป็นแผ่น PCB ที่มี Pin ซึ่งเหมือนขาของ IC แต่ Pin ของ SIPP จะมีเพียงแถวเดียวเรียงไปตามแนวยาวของแผ่น PCB การติดตั้ง SIPP ที่มีลักษณะเป็นรูกลมเรียงหนึ่งเป็นแถวยาวมีจำนวนรูเท่ากับ Pin ของ SIPP พอดี ประหยัดเนื้อที่บนเมนบอร์ด และติดตั้งง่ายกว่า DIP มาก
         3. SIMM (Single In-line Memory Module) รูปร่างหน้าตา จะคล้ายกับ SIPP แต่ต่าง ส่วนที่จะต่อกับ ซ็อคเก็ตบนเมนบอร์ด จาก Pin เป็นแบบ Edge Connector คือเป็น ลายวงจรเรียง กันเป็นซี่ตามขอบของ PCB ในแนวยาว ลักษณะเหมือนกับ ที่เห็นตามการ์ดต่างๆ แต่ในการติดตั้ง SIMM จะไม่ใช้การเสียบลงไปตรงๆ เหมือนการ์ดทั่วไป แต่จะเสียบลงแบบเอียงๆแล้วดันSIMM ไปด้านข้างเพื่อให้ กลไกบนซ็อคเก็ตทำการล็อก SIMM เอาไว้ การใช้ Edge connector ในSIMM ก็เพื่อตัดปัญหาเรื่องหน้าสัมผัสของ Pin กับซ็อคเก็ต
        SIMM ที่ถูกผลิตออกมาจะแบ่งได้เป็นชนิดต่างๆ ตามความกว้างของข้อมูลของ SIMM แต่ละโมดูล คือ ชนิด 8 บิต, 16 บิต, 32 บิต การจัดวางลำดับของ Edge connector จะมีมาตรฐาน กลางที่ใช้กันอยู่
         4. DIMM (Dual In-line Memory Module) เป็น RAM ชนิดใหม่ และถูกกำหนด ให้เป็นมาตรฐานกลางโดย JEDEC (Joint Electron Device Engineering Council) ลักษณะโดย ทั่วไป จะคล้าย SIMM แต่จะมี 168 Pin (ข้างละ 84 pin )

หน่วยความจำรอง


คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/fireballsest.gifส่วนความจำรอง (secondary memory) ใช้เป็นส่วนเพิ่มความจำให้มีขนาดใหญ่มากขึ้น ทำงานติดต่อยู่กับส่วนความจำหลัก ส่วนความจำรองมีความจุมากและมีราคาถูก แต่เรียกหาข้อมูลได้ช้ากว่าส่วนความจำหลัก คือ ทำงานได้ในเวลาเศษหนึ่งส่วนพันวินาที
ข่าวสารหรือข้อมูลที่จะเก็บไว้ในส่วนความจำนั้นเป็นรหัสแทนเลขฐานสอง (binary) คือ ๐ กับ ๑ ซึ่งต้องเก็บไว้เป็นกลุ่ม ๆ และมีแอดเดรสตามที่กำหนด เพื่อความสะดอกขอนิยามไว้ดังนี้
บิต (bit) เป็นชื่อที่เขียนย่อจาก binary digit ซึ่งหมายถึงตัวเลขฐานสองคือ ๐ กับ ๑ ซึ่งเป็นส่วนประกอบที่เล็กที่สุดของหน่วยความจำ
ไบต์ (byte) เป็นชื่อที่ใช้เรียกกลุ่มของบิต ซึ่งขึ้นอยู่กับการเลือกใช้ เช่น ๖ บิต ๘ บิต…….ก็ได้ ซึ่งเรียกว่า ๖ บิตไบต์ ๘ บิตไบต์ ๑๖ บิตไบต์……..ตามลำดับ เป็นต้น
ตัวอักษร (character) หมายถึงสัญลักษณ์ที่ใช้ในคอมพิวเตอร์ คือตัวเลข 0-9  ตัวอักษร A-Z และเครื่องหมายพิเศษบางอย่างที่จำเป็น เช่น ( ), < , +, = ,………. ฯลฯ เป็นต้น ซึ่งเราจะต้องแทนตัวอักษรหนึ่ง ๆ ด้วยรหัสของกลุ่มเลขฐานสอง 1 ไบต์ (ซึ่งอาจเป็น 7 หรือ 8 บิตไบต์)
คำ (word) หมายถึงกลุ่มของเลขฐานสองตั้งแต่ 1 ไบต์ขึ้นไป ที่สามารถเก็บไว้ในส่วนความจำเพียง 1 แอดเดรส ขนาดของคำขึ้นอยู่กับการเลือกใช้เครื่องคอมพิวเตอร์ บางเครื่องใช้คำหนึ่งประกอบขึ้นจาก 2 ไบต์ แต่ละไบต์เป็นชนิด 8 บิต ดังนั้นคำหนึ่งจึงมี 16 บิต บางเครื่องใช้คำหนึ่งประกอบขึ้นจาก 4 ไบต์ แต่ละไบต์เป็นชนิด 8 บิต ดังนั้นคำหนึ่งจึงมี 32 บิต เครื่องคอมพิวเตอร์บางเครื่องใช้คำหนึ่งประกอบขึ้นจาก 48 หรือ 64 บิตก็มี
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/bit.gif
ขนาดของส่วนความจำบอกเป็นจำนวน K คำ ซึ่ง K ย่อมาจากคำว่า kilo อันหมายถึง 1,000 แต่ค่าที่แท้จริงคือ 2 10 = 1,024 หน่วยของส่วนความจำหน่าวยหนึ่งอาจจะมีจำนวนต่ำสุด 4K จึงถึงใหญ่สุด 128K (ชนิดของแกนแม่เหล็ก) หรือใหญ่สุด 4,000K (ชนิดของวงจรเบ็ดเสร็จชนิดใหญ่)
ในยุคสังคมสารสนเทศทุกวันนี้ ข้อมูลและโปรแกรมคอมพิวเตอร์จะมีจำนวนหรือขนาดใหญ่มาก ตามความ เจริญก้าวหน้าของเทคโนโลยีและความซับซ้อนของปัญหาที่พบในงานต่างๆ หน่วยความจำหลักที่ใช้เก็บข้อ มูลในคอมพิวเตอร์จึงต้องมีขนาดใหญ่ตามไปด้วย โดยทั่วไปหน่วยความจำหลักจะมีขนาดจำกัด ทำให้ไม่พอเพียงสำหรับการเก็บข้อมูลจำนวนมาก ในระบบคอมพิวเตอร์จึงมักติดตั้งหน่วยความจำรอง เพื่อนำมาใช้ เก็บข้อมูลจำนวนมาก เป็นการเพิ่มขีดความสามารถด้านจดจำของคอมพิวเตอร์ให้มากยิ่งขึ้น นอกจากนี้ถ้า มีการปิดเครื่องคอมพิวเตอร์ในขณะทำงานข้อมูลและโปรแกรมที่เก็บไว้ในหน่วยความจำหลักหรือแรมจะสูญหายไปหมด หากมีข้อมูลส่วนใดที่ต้องการเก็บไว้ใช้งานในภายหลังก็สามารถเก็บไว้ในหน่วยความจำรอง หน่วยความจำรองที่ นิยมใช้กันมากจะเป็นจานแม่เหล็กซึ่งจะมีทั้งแผ่นบันทึกและฮาร์ดดิสก์
หน่วยความจำแคชสำหรับดิสก์

ชิ้นส่วนที่ทำงานช้าที่สุดของคอมพิวเตอร์คือ  ดิสก์ไดรฟ์  มีวิธีการแก้ปัญหาคือ  การสร้างไฟล์ให้อยู่บริเวณต่อเนื่องกันทั้งไฟล์  วิธีสองคือ การหันไปใช้แรมดิสก์แทนไดรฟ์จริง  ซึ่งแรมดิสก์เป็นส่วนหนึ่งของหน่วยความจำของคอมพิวเตอร์ แต่ก็ยังไม่สามารถลดหรือจำกัดการอ่านเขียนดิสก์ได้ทั้งหมด  เพื่อการเพิ่มประสิทธิภาพการเข้าอ่านเขียนดิสก์  อาจแก้ไขปัญหาโดยการใช้ดิสก์แคช  โดยความหมายของดิสก์แคชก็คือ  หน่วยความจำชนิดหนึ่งที่เก็บข้อมูลชั่วคราวที่เราใช้บ่อยๆ ถี่ๆ  หรือเก็บข้อมูลที่โปรแกรมแอพพลิเคชันมักร้องขอใช้มากครั้ง  ผลก็คือ  การอ่านเขียนดิสก์ครั้งต่อไป  ก็ไม่จำเป็นต้องเข้าอ่านดิสก์  แต่ไปอ่านที่หน่วยความจำแคชแทน 
 ปัจจุบัน  ด้วยการพัฒนาการ์ดควบคุมดิสก์ให้มีวงจรดิสก์ให้มีวงจรดิสก์แคช  และ RAM ที่เป็นฮาร์ดแวร์บนการ์ดโดยตรง  ทำให้แคชนีทำงานได้เร็ว  มีประสิทธิภาพโดยไม่ได้ใช้หน่วยความจำหลักบนเมนบอร์ดของเครื่องพีซี  ไม่ต้องส่งคำสั่งไปให้ซีพียูหลักบนพีซีประมวล 
ดิสก์แคช 
 1. เมื่อคุณโหลดโปรแกรมจัดการดิสก์แคชลงในหน่วยความจำ  มันจะฝังตัวลงหน่วยความจำ  จากนั้นก็จะจองพื้นที่หน่วยความจำแยกต่างหากไว้ส่วนหนึ่งสำหรับทำดิสก์แคช  พื้นที่หน่วยความจำที่จองไว้นี้อาจจะเป็นพื้นที่หน่วยความจำธรรมดา (conventional)  หน่วยความจำชนิดสลับขยาย (expanded  memory)  หรือเป็นหน่วยคำจำเกินพันไบต์แรก (expanded  memory) ก็ได้โดยโปรแกรมบางตัวจะมีการจองพื้นที่ให้มากที่สุดเท่าที่จะมากได้  และจะคืนพื้นที่หน่วยความจำบางส่วน  เวลาที่โปรแกรมอื่นต้องการใช้หน่วยความจำบ้าง  ขณะที่บางโปรแกรมจะจองหน่วยความจำขนาดตายตัวไม่เปลี่ยนแปลง 
 2. เมื่อซอฟต์แวร์ของคุณสั่งให้ซีพียู (CPU)  อ่านข้อมูลจากฮาร์ดดิสก์  โปรแกรมจัดการหน่วยความจำแคช  ซึ่งได้ฝังตัวอยู่ในความจำเรียบร้อยแล้ว  จะดักรับรู้คำสั่งดังกล่าวไว้ด้วย 
 3. โปรแกรมแคชอ่านข้อมูลที่ซีพียูต้องการจากดิสก์  บวกเพิ่มกับข้อมูลอื่นๆ  ที่รอบข้างข้อมูลดังกล่าวเก็บลงหน่วยความจำที่จองไว้แล้ว  จากนั้นส่งข้อมูลดังกล่าวให้ซีพียูไป 
 4. ระหว่างที่ซีพียูว่างงาน  โปรแกรมแคชจะทำหน้าที่เก็บข้อมูลอื่น  ของไฟล์ดังกล่าวที่อยู่ในคลัสเตอร์รอบข้าง  หรือคนละคลัสเตอร์  เก็บลงหน่วยความจำที่จองไว้จนมากพอ  สำหรับการค้นหาคลัสเตอร์ของไฟล์ที่อยู่แยกกันไม่ต่อกันเป็นแถวนั้น  โปรแกรมแคชจะถูกโปรแกรมให้ชาญฉลาดพอที่จะค้นหาได้เอง  ความสามารถในด้านนี้จึงมักจะเป็นตัววัดว่าโปรแกรมแคชตัวไหนดีกว่ากัน 
 5. เมื่อโปรแกรมต้องการข้อมูลจากไฟล์เดิมเพิ่มเติม  โปรแกรมแคชจะดักรับรู้คำสั่งอ่านข้อมูลนั้นไว้  จากนั้นจะสำรวจว่าข้อมูลดังกล่าวได้อยู่ในแรมที่จองไว้แล้วหรือยัง  ถ้ามีก็ทำการส่งข้อมูลจากแรมไปที่ซีพียูโดยตรง  ไม่ผ่านการอ่านดิสก์เหมือนเดิมอีก  ทำให้เวลาในการเรียกค้นข้อมูลเร็วขึ้น (เวลาในการอ่านจากดิสก์โดยตรงจะกินเวลาทำงานมากกว่าการอ่านจากแรมหลายสิบเท่า)  สำหรับกรณีไม่มีข้อมูลที่ต้องการในแรม  โปรแกรมแคชจะก๊อบปี้ข้อมูลในดิสก์ลงแรมที่จองไว้ก่อน  จากนั้นจึงค่อยส่งข้อมูลดังกล่าวไปให้ซีพียู  ซึ่งขั้นตอนจะเหมือนข้อ 3 และ เช่นนี้ตลอดเวลา 
 6. เมื่อซอฟต์แวร์คุณสั่งให้เซฟหรือเก็บไฟล์ลงดิสก์  โปรแกรมแคชบางตัวจะรับคำสั่งดังหล่าวแล้วเริ่มทำงานเวลาที่ซีพียูว่าง  ลักษณะนี้จะทำให้ความเร็วในการทำงานของคอมพิวเตอร์ดีขึ้น  เพราะซีพียูไม่ต้องแบ่งเวลาในช่วงเดียวกันเพื่อทำการประมวลผลและเขียนดิสก์ไปพร้อมๆ กัน 
 7. การเขียนแก้ไฟล์จะกระทำที่แรมก่อน  จากนั้นโปรแกรมแคชจะสำรวจว่าข้อมูลที่เขียนแก้ไขใหม่นั้นเป็นเฉพาะบางคลัสเตอร์หรือไม่  ถ้าใช่  มันก็จะก๊อบปี้เฉพาะคลัสเตอร์ที่มีการเปลี่ยนแปลงกลับลงดิสก์เท่านั้น  ทั้งนี้เพื่อลดเวลาการเคลื่อนที่ของหัวอ่านดิสก์ให้มากที่สุด  ซึ่งประหยัดเวลาการทำงานของคอมพิวเตอร์โดยรวมไปได้มาก 
เครื่องแถบแม่เหล็ก (tape drive)

เครื่องแถบแม่เหล็ก (tape drive) เป็นเครื่องที่ใช้อ่านและบันทึกข้อมูลบนแถบแม่เหล็ก มีหลักการทำงานเหมือนเครื่องบันทึกเสียงด้วยแถบแม่เหล็กทั่วไปที่ใช้อยู่ตามบ้าน แต่ได้ออกแบบให้มีความก้าวหน้าทางเทคนิคมากกว่า เช่น มีความเร็วสูงกว่าเครื่องที่ใช้ตามบ้าน คือมีอัตราเร็ว 25-100 นิ้วต่อวินาที เริ่มเดินแถบและหยุดแถบได้เร็วกว่าระหว่างทำงานสามารถอ่านและบันทึกข้อมูลได้เร็วกว่า เป็นต้น
เครื่องแถบแม่เหล็กนี้ มีหัวอ่านและหรือหัวบันทึกเช่นเดียวกับในเครื่องบันทึกเสียงที่ใช้อยู่ตามบ้าน สามารถบันทึกเป็นรอยทาง (track) แต่มีจำนวนรอยทางมากกว่า เช่น 7 หรือ 9 รอยทาง และเก็บข้อมูลเป็นจุด ๆ (spots) ไม่เหมือนกับเครื่องบันทึกเสียงที่บันทึกเป็นรูปคลื่น ซึ่งขึ้นอยู่กับเสียงพูดหรือเสียงดนตรี
เครื่องแถบแม่เหล็ก

 
แถบแม่เหล็กทำด้วยพลาสติกฉาบออกไซด์ของโลหะซึ่งเมื่อทำการบันทึกข้อมูล ออกไซด์ของโลหะจะกลายเป็นแม่เหล็กเป็นจุด ๆ ตามรหัสที่ใช้ แถบนี้มีลักษณะคล้ายกับแถบที่ใช้ในเครื่องบันทึกเสียง โดยมีความกว้าง คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/1_2.gif หรือ 1 นิ้ว และมีความยาว 600 หรือ 1,200 หรือ 2,400 ฟุต ตามความยาวของแถบ 1 นิ้วจะสามารถบันทึกตัวอักษรได้ 556 หรือ 800 หรือ 1,600 ตัวอักษร ดังนั้น แถบหนึ่งม้วนจะบันทึกตัวอักษรได้ประมาณ 4 หรือ 12 หรือ 46 ล้านตัว อัตราการถ่ายทอดข้อมูล มีอัตราความเร็วแตกต่างกันประมาณ 10,000-200,000 ตัวอักษรต่อวินาที สามารถล้างข่าวสารที่บันทึกไว้ออก และทำการอัดใหม่ได้


ม้วนแถบแม่เหล็กความยาวต่าง ๆ เก็บภายในกล่องในปัจจุบันได้มีการประดิษฐ์แถบแม่เหล็กนี้ได้เล็กลงเรียกว่า แถบตลับ (cassette tape) ซึ่งเหมือนกับแถบตลับที่ใช้กับเครื่องเล่นแถบตลับทั่วไป
ข้อดีของแถบแม่เหล็กคือ มีอัตราการถ่ายทอดข้อมูลเร็วมาก สามารถเก็บข้อมูลไว้ได้มาก เป็นการง่ายที่จะลบออกและนำไปบันทึกใหม่ มีราคาถูก สามารถใช้เป็นได้ทั้งส่วนรับและส่งผลงาน และสามารถนำไปใช้เป็นส่วนความจำได้อีกด้วย แต่มีข้อจำกัดคือ เมื่อต้องการแก้ไขข้อมูลที่เก็บไว้ จะแก้ไขหรือแทรก (insert) ข้อมูลใหม่ลงไปในระหว่างข้อมูลเดิมที่บันทึกไว้แล้วได้ยาก นอกจากนี้ยังเป็นการสิ้นเปลืองเวลาของคอมพิวเตอร์ในการค้นหาข้อมูลใดข้อมูลหนึ่งที่ต้องการโดยเฉพาะในม้วนแถบ
เครื่องจานแม่เหล็ก (disk drive) เป็นเครื่องที่ใช้อ่านและบันทึกข้อมูลบนจานแม่เหล็ก มีหลักการทำงานคล้ายเครื่องเล่นจานเสียงธรรมดาทั่ว ๆ ไป แต่แทนที่จะมีเข็มกลับมีหัวอ่านและหรือหัวบันทึก (read-write head) คล้ายเครื่องแถบแม่เหล็กที่เคลื่อนที่เข้าออกได้ เครื่องจานแม่เหล็ก มีสองแบบ คือ แบบจานติดอยู่กับเครื่อง (fixed disk) และแบบยกจานออกเปลี่ยนได้ (removable disk)
จานแม่เหล็กส่วนใหญ่ทำด้วยพลาสติก มีรูปร่างเป็นจานกลมคล้ายจานเสียงธรรมดา แต่ฉาบผิวทั้งสองข้างด้วยสารแม่เหล็กเฟอรัสออกไซด์ การบันทึกทำบนผิวของสารแม่เหล็กแทนที่จะเซาะเป็นร่องเล็ก ๆ การอ่านและการบันทึกข้อมูลกระทำโดยใช้หัวอ่านที่ติดตั้งไว้บนแผงที่สามารถเลื่อนเข้าออกได้
ข้อมูลจะถูกบันทึกไว้บนรอยทางวงกลมบนผิวจานซึ่งมีจำนวนต่าง ๆ เช่น 100-500 รอยทาง ขนาดเส้นผ่านศูนย์กลางของจานมีตั้งแต่ 1-3 ฟุต สามารถบันทึกตัวอักษรได้หลายล้านตัวอักษร การบันทึกใช้บันทึกทีละบิตโดยใช้แปดบิตต่อหนึ่งไบต์ จานแม่เหล็กหมุนเร็วประมาณ 1,500-1,800 รอบต่อนาที สามารถค้นหาข้อมูลด้วยเวลาเฉลี่ยประมาณ 50 มิลลิวินาที สามารถย้ายข้อมูลด้วยอัตราเร็วสูงถึง 320,000 ไบต์ต่อวินาที ขอให้เราสังเกตว่าเวลาเฉลี่ยเหล่านี้เป็นเวลาที่ช้ากว่าเครื่องรุ่นใหม่ ๆ มาก
ถ้าต้องการเก็บข้อมูลจำนวนมาก เขาจะใช้จานแม่เหล็กที่มีจำนวน 2 หรือ 6 หรือ 12 จานมาติดตั้งซ้อนกันตามแนวดิ่ง รวมกันเป็นหนึ่งหน่วย เรียกว่า ดิสก์แพ็ค (disk pack) ซึ่งเราสามารถยกดิสก์แพ็คเข้าออกจากเครื่องได้ การทำเช่นนี้ ทำให้จานแม่เหล็กสามารถทำหน้าที่คล้ายแถบแม่เหล็ก
แผ่นบันทึก (Floopy Disk)

ลักษณะทั่วไป

        ขนาดโดยทั่วไปของ disks คือ 8 นิ้ว, 5.25 นิ้ว และ 3.5 นิ้ว ตัว disk ถูกทำจาก Mylar และฉาบด้วยสารแม่เหล็ก เมื่อ disk ถูกใส่ใน drive unit ใน spindle clampsที่อยู่ส่วนกลางของช่องว่างจะถูกหมุน ด้วยความเร็วคงที่ อาจจะ 300 หรือ 360 รอบต่อนาที ข้อมูลจะถูกเก็บบน disk ใน circular tracks หัวอ่าน/เขียน จะติดต่อกับ disk ผ่านทาง racetrack-shaped slot เพื่ออ่านหรือเขียนลงไปบน disk

            ในการเขียน กระแสไฟฟ้าจะไหลผ่านไปที่ขดลวดในหัวอ่าน และจะสร้างฟลักซ์แม่เหล็กในแกนเหล็ก ของหัวอ่าน/เขียน ช่องว่างในแกนเหล็กจะยอมให้ฟลักซ์แม่เหล็กไหลผ่านออกมา และทำให้สารแม่เหล็กบน disk เป็นแม่เหล็กขึ้น พื้นที่บน disk ถูกทำให้เป็นแม่เหล็กโดยเป็นอนุภาคที่มีทิศทางและคงสถานะ แม่เหล็กไว้ ั้วของพื้นที่ที่ทำเป็นแม่เหล็กจะพิจารณาโดยใช้ทิศทางการไหลของกระแสผ่านขดลวด ข้อมูลก็สามารถอ่านจาก disk ด้วยหัวอ่าน/เขียนเช่นเดียวกัน โ่ดยเมื่อขั้วของแม่เหล็กเปลี่ยนเพราะ track ผ่านไปบนช่องว่างในหัวอ่าน/เขียน ศักย์ไฟฟ้าเล็ก ๆ เป็น มิลลิโวลต์ จะถูกเหนี่ยวนำในขดลวด amplifier และ comparator ถูกใช้เป็นตัวเปลี่ยนสัญญาณเล็ก ๆ เป็นระดับ logic มาตราฐานร่อง write-protect ในซอง floppy disk สามารถใช้ป้องกันการเก็บข้อมูลจากการเขียนทับเหมือนกับ knock-out plastic บนตลับเทปคลาสเซ็ท LED และ Phototransistor สามารถชี้ว่าร่องนี้มีหรือไม่ และจะเขียนเมื่อพบว่ามีร่องนี้อยู่ index hole ที่เจาะบนแผ่น disk จะชี้จุดเริ่มของ record tracks จะใช้ LED และ Phototransistor ในการตรวจสอบหา index hole
รูปแบบการบันทึกบิท (Recorded Bit Formats - FM and MFM)
            บิท 1 แทนด้วยการเปลี่ยนขั้วของแม่เหล็กบน track บิท 0 แทนด้วยการไม่เปลี่ยนขั้วของแม่เหล็ก รูปแบบการบันทึกนี้มักเรียกว่า non-return-to-zero หรือการบันทึกแบบ NRZ เพราะมีสนามแม่เหล็ก บน track เสมออาจมีขั้วเป็นหนึ่งทิศทางหรือหลายทิศทาง หัวอ่านจะสร้างสัญญาณเมื่อพื้นที่ที่มีสนามแม่เหล็กเปลี่ยนผ่านบนหัวอ่าน

            จากรูปแสดงการเก็บบิทบน track ในรูปแบบ single-density รูปแบบนี้มักเรียกว่า การบันทึก frequency modulation, FM, หรือ F2F สังเกตจะมี clock pulse, C ที่จุดเริ่มของแต่ละ bit cell ในรูปแบบนี้ pulse เหล่านี้จะแทนความถี่พื้นฐาน บิท 1 จะถูกเขียนใน bit cell โดยใส่ใน pulse, D ระหว่าง clock pulse บิท 0 จะถูกแทนโดยการไม่มี pulse ระหว่าง clock pulse
            ข้อดีของ การบันทึกแบบ F2F คือ clock pulse และ data bit ถูกใช้เพื่อแทนแต่ละ data bit เพราะว่า bits สามารถเก็บใกล้ ๆ กันบน disk track โดยไม่เชื่อมต่อกัน การเก็บรูปแบบนี้ มีข้อจำกัดในด้านจำนวนของข้อมูลที่สามารถเก็บบน track เพื่อในจำนวนของข้อมูลที่สามารถเก็บบน track มีเป็นสองเท่าเราจะใช้การจัดเก็บแบบ modified frequency modulation หรือ MFM แสดงดังรูปข้างต้น
            หลักเบื้องต้นของรูปแบบนี้คือ ทั้ง clock pulses และ "1" data pulses ถูกใช้เพื่อเก็บ phase-locked loop และอ่าน circuitry synchronized โดย clock pulse จะไม่ถูกนำไปใส่ถ้า data pulse ไม่เกิดขึ้นสม่ำเสมอพอใน data bytes เพื่อเก็บ phase-locked loop clock bits ถูกเก็บที่จุดเริ่มต้นของ bit cell และ data bits ถูกเก็บในส่วนกลางของ bit cell time clock bits จะถูกเก็บลงถ้า data bit ใน cell ก่อนหน้าเป็น 0 และ data bit ใน bit cell ขณะนั้นเป็น 0 ด้วย เพราะว่ารูปแบบนี้มีทุกกรณีเพียง 1 pulse ต่อ bit cell , bit cell สามารถมีความยาวครึ่งหนึ่ง หรือ มากเป็น 2 เท่า ที่สามารถเก็บลงใน track วิธีนี้เป็นการบันทึกแบบ double-density มีใน IBM PC และ microcomputers ธรรมดาอื่น ๆ
Floppy Disk Controller - the Intel 8272A
            จากการพิจารณาเรื่องก่อนหน้านี้เราสามารถบอกได้ว่า การเขียนข้อมูลไปที่ floppy disk และการอ่านข้อมูลกลับมาต้องการความพร้อมเพียงหลายระดับ ระดับหนึ่งคือมอเตอร์และสัญญาณของหัวอ่าน ระดับอื่น ๆ คือ การเขียนและการอ่านระดับบิทจริง ๆ การทำทุก ๆ สิ่งของความพร้อมเพียงนี้เป็นงานหลัก ดังนั้นเราต้องออกแบบ floppy disk controller เป็นพิเศษ ตัวอย่างในที่นี้ เราใช้ Intel 8272A controller ซึ่งเทียบเท่ากัน NEC uPD765A controller ที่ใช้ใน IBM PC 8272 Signals and Circuit Connectiions

            เริ่มแรกให้มองที่แผนผังของ 8272A ตามรูป สัญญาณตามด้านซ้ายของแผนผัง สาย data bus, RD, WR, A0, RESET, ละ CS เป็นสัญญาณ peripheral interface มาตราฐาน สัญญาณ DRQ, DACK, และ INT ถูกใช้สำหรับ DMA transfer ของข้อมูลระหว่าง controller เมื่อโปรแกรมทางคอมพิวเตอร์ต้องการข้อมูลจาก disk มันจะส่งชุดคำสั่งไปที่ registers ภายใน controller, controller ก็จะทำขบวนการเพื่ออ่านข้อมูลจาก track และ sector บน disk เมื่อ controller อ่าน byte แรกของข้อมูลจาก sector มันจะส่งสัญญาณ DMA request, DRQ ไปที่ DMA controller, DMA controller จะส่งตำแหน่งแรกของการเคลื่อนย้ายไปบน bus และแสดง DACK input ของ 8272 เพื่อบอกว่า DMA transfer ก้าวหน้าแล้ว เมื่อจำนวนของ bytes ที่ระบุใน DMA initialization ถูกเคลื่อนย้าย DMA controller จะแสดง TERMINAL COUNT input ของ 8272 ด้วยเหตุนี้ 8272 จะแสดงสัญญาณ interrupt output, INT สัญญาณ INT สามารถติดต่อไปยัง CPU เพื่อบอกให้ CPU ทราบว่าต้องการชุดของข้อมูลที่ถูกอ่านจาก disk ไปไว้ที่ buffer ในหน่วยความจำ
สัญญาณต่าง ๆ ในการติดต่อกับ disk drive hardware
            สัญญาณ READY จาก disk drive จะเป็น high ถ้า drive มีไฟฟ้าอยู่และพร้อมที่จะทำงาน ถ้าเราลืมปิดตะปู disk drive สัญญาณ READY ก็จะไม่แสดง
            สัญญาณ WRITE PROTECT/TWO SIDE สัญญาณนี้จะชี้ว่า write protect notch ถูกปิด หรือไม่เมื่อ drive อยู่ในภาวะอ่านหรือเขียน เมื่อ drive ทำขบวนการในภาวะ track-seek สัญญาณนี้ก็จะชี้ว่า drive เป็น two-sided หรือ one-sided
            สัญญาณ INDEX จะเป็นจัวหวะเมื่อ index hole ใน disk ผ่านระหว่าง LED และ Phototran sistor detector
            สัญญาณ FAULT/TRACK 0 ชี้เงื่อนไขของปัญหาที่เกิดขึ้นกับ disk drive ระหว่างทำขบวนการ อ่าน/เขียน ส่วนในระหว่าง ทำขบวนการ track-seek สัญญาณจะแสดงเมื่อ หัวอ่านอยู่เหนือ track 0
            สัญญาณ DRIVE SELECT ,DS0 และ DS1 จาก controller ถูกส่งไปที่ตัวแปลข้อมูลภายนอก ซึ่งใช้สัญญาณนี้สร้างสัญญาณ enable สำหรับ1 ถึง 4 drives
            สัญญาณ MFM จะแสดง high ถ้า controller ถูกโปรแกรมสำหรับ modified frequency moduration และ low ถ้า controller ถูกโปรแกรมสำหรับ standard frequency modulation(FM)
            สัญญาณ RW/SEEK ถูกใช้เพื่อบอก drive ให้ทำขบวนการในภาวะอ่าน/เขียน หรือ ภาวะ track-seek
            สัญญาณ HEAD LOAD จะแสดงโดย controller เพื่อบอก drive hardware ให้นำหัวอ่าน/เขียนไปติดต่อกับ disk เมื่อการเชื่อมต่อไป double-sided drive ,HEAD SELECT จาก controller ถูกใช้กับสัญญาณนี้เพื่อชี้ว่าหัวอ่านทั้งสองควรถูก loaded ระหว่างขบวนการเขียนบน track ด้านในของ disk สัญญาณ LOW CURRENT/DIRECTION
            จะแสดงโดย controller เพราะว่า bit บน track ด้านในจะอยู่ใกล้กันมาก กระแสที่ใช้ในการเขียนต้องถูกลดลงเพื่อป้องกันการเขียนทับกัน เมื่อทำคำสั่ง seek-track สัญญาณนี้ก็จะใช้บอก drive ว่า ก้าวออกนอกขอบของ disk หรือ อยู่ภายในตรงศูนย์กลาง

            จากรูป เราจะมองสัญญาณที่ใช้อ่านและเขียน clock และ data bit บน track ตามรูปจะแสดงสัญญาณไฟฟ้าระหว่างขาและหัวอ่าน/เขียน ในการบันทึกนั้นข้อมูล clock จะถูกเก็บบน track พร้อมกับข้อมูล data เราใช้ clock bits เพื่อบอกเราเมื่ออ่าน data bits , สัญญาณ VcoSYNC จาก controller จะบอกวงจร phase-locked loop ภายนอก เพื่อ synchronize ความถื่ , output จากวงจร phase-locked loop คือ สัญญาณ DATA WINDOW สัญญาณนี้จะถูกส่งไปยัง controller เพื่อบอกว่าจะหา data pulse ที่ไหนใน data stream ที่มาใน READ DATA input External circuitry supplies ที่เป็นพื้นฐานของสัญญาณ WR CLOCK จะใช้ความถี่ 500 kHzสำหรับแบบ FM และ 1 MHz สำหรับแบบ MFM , output ของ 8272 ที่เป็นclock bits และ data bits จะถูกเขียนลง disk โดยขาของ WR DATA ระหว่างขบวนการเขียน 8272 จะแสดงสัญญาณ WR ENABLE เพื่อเปิด วงจรภายนอก ซึ่งส่งข้อมูลให้กับหัวอ่าน/เขียน สัญญาณPRE-SHIFT 0 และ PRE-SHIFT 1 จาก controller จะไปที่วงจรภายนอกซึ่ง shift bits ไปข้างหน้าหรือถอยหลังเมื่อจะมีการเขียน bit ก็จะมีตำแหน่งที่ถูกต้องเมื่ออ่านออกมา

ฮาร์ดดิสค์ (Hard disk)



ลักษณะทั่วไป
        ระบบฮาร์ดดิสค์แตกต่างกับแผ่นดิสเกตต์ ซึ่งโดยทั่วไปแล้วจะมีจำนวนหน้าสำหรับเก็บบันทึกข้อมูลมากกว่าสองหน้า นอกจากระบบฮาร์ดดิสค์จะเก็บบันทึกข้อมูลเหมือนแผ่นดิสเกตต์ยังเป็นส่วนที่ใช้ในการอ่านหรือเขียนบันทึกข้อมูลเหมือนช่องดิสค์ไดรฟ์
        แผ่นจานแม่เหล็กของฮาร์ดดิสค์ จะมีความหนาแน่นของการจุข้อมูลบนผิวหน้าได้สูงกว่าแผ่นดิสเกตต์มาก เช่น แผ่นดิสเกตต์มาตราฐานขนาด 5.25 นิ้ว ความจุ 360 กิโลไบต์ จะมีจำนวนวงรอบบันทึกข้อมูลหรือเรียกว่า แทร็ก(track) อยู่ 40 แทร็ก กรณีของฮาร์ดดิสค์ขนาดเดียวกันจะมีจำนวนวงรอบสูงมากกว่า 1000 แทร็กขึ้นไป ขณะเดียวกันความจุในแต่ละแทร็กของฮาร์ดดิสค์ก็จะสูงกว่า ซึ่งประมาณได้ถึง 5 เท่าของความจุในแต่ละแทร็กของแผ่นดิสเกตต์
        เนื่องจากความหนาแน่นของการบันทึกข้อมูลบนผิวแผ่นจานแม่เหล็กของฮาร์ดดิสค์สูงมาก ๆ ทำให้หัวอ่านและเขียนบันทึกมีขนาดเล็ก ตำแหน่งของหัวอ่านและเขียนบันทึกก็ต้องอยู่ในตำแหน่งที่ใกล้ชิดกับผิวหน้าจานมาก โอกาสที่ผิวหน้าและหัวอ่านเขียนอาจกระทบกันได้ ดังนั้นแผ่นจานแม่เหล็กจึงควรเป็นแผ่นอะลูมิเนียมแข็ง แล้วฉาบด้วยสารแม่เหล็ก ฮาร์ดดิสค์จะบรรจุอยู่ในกล่องโลหะปิดสนิท เพื่อป้องสิ่งสกปรกหลุดเข้าไปภายใน ซึ่งถ้าต้องการเปิดออกจะต้องเปิดในห้องเรียก clean room ที่มีการกรองฝุ่นละออกจากอากาศเข้าไปในห้องออกแล้ว ฮาร์ดดิสค์ที่นิยมใช้ในปัจจุบันเป็นแบบติดภายในเครื่องไม่เคลื่อนย้ายเหมือนแผ่นดิสเกตต์ ดิสค์ประเภทนี้อาจเรียกว่า ดิสค์วินเชสเตอร์(Winchester Disk)

        ฮาร์ดดิสค์ส่วนใหญ่จะประกอบด้วยแผ่นจานแม่เหล็ก(platters) สองแผ่นหรือมากกว่ามาจัดเรียงอยู่บนแกนเดียวกันเรียก Spindle ทำให้แผ่นแม่เหล็กหมุนไปพร้อม ๆ กัน จากการขับเคลื่อนของมอเตอร์ด้วยความเร็ว 3600 รอบต่อนาที แต่ละหน้าของแผ่นจานจะมีหัวอ่านเขียนประจำเฉพาะ โดยหัวอ่านเขียนทุกหัวจะเชื่อมติดกันคล้ายหวี สามารถเคลื่อนเข้าออกระหว่างแทร็กต่าง ๆ อย่างรวดเร็ว

จากรูปเป็นภาพตัดขวางของฮาร์ดดิสค์แสดงแผ่นจาน แกนหมุน Spindle หัวอ่านเขียน และก้านหัวอ่านเขียน

            จากรูปแสดงฮาร์ดดิสค์ที่มีแผ่นจาน 2 แผ่น พร้อมการกำกับชื่อแผ่นและหน้าของดิสค์ ผิวของแผ่นจานกับหัวอ่านเขียนจะอยู่เกือบชิดติดกัน คือห่างกันเพียงหนึ่งในแสนของนิ้ว และระยะห่างนี้ ในระหว่างแทร็กต่าง ๆ ควรสม่ำเสมอเท่ากัน ซึ่งกลไกของเครื่องและการประกอบฮาร์ดดิสค์ต้องละเอียดแม่นยำมาก การหมุนอย่างรวดเร็วของแผ่นจาน ทำให้หัวอ่านเขียนแยกห่างจากผิวจาน ด้วยแรงลมหมุนของจาน แต่ถ้าแผ่นจานไม่ได้หมุนหรือปิดเครื่อง หัวอ่านเขียนจะเลื่อนลงชิดกับแผ่นจาน ดังนั้นเวลาเลิกจากการใช้งานเรานิยมเลื่อนหัวอ่านเขียนไปยังบริเวณที่ไม่ได้ใช้เก็บข้อมูลที่เรียกว่า Landing Zone เพื่อว่าถ้าเกิดการกระแทรกของหัวอ่านเขียนและผิวหน้าแผ่นจานก็จะไม่มีผลต่อข้อมูลที่เก็บไว้
การโอนย้ายข้อมูลระหว่างฮาร์ดดิสค์กับหน่วยความจำ
            ฮาร์ดดิสค์ที่ใช้งานประกอบเครื่องไมโครคอมพิวเตอร์จะต้องมีการ์ดควบคุมฮาร์ดดิสค์มาทำงานร่วม โดยจะเสียบเข้ากับสล้อตที่ยังว่างอยู่ของเครื่องคอมพิวเตอร์ ในการอ่านข้อมูลจากดิสค์ หัวอ่านเขียนจะนำข้อมูลที่อ่านได้ส่งผ่านวงจรอิเล็กทรอนิกส์ของไดรฟ์ไปยังการ์ดควบคุมดิสค์ โดยจะเก็บอยู่ในเนื้อที่ความจำชั่วคราวเพื่อเก็บข้อมูล เรียกบัฟเฟอร์ข้อมูล (Data buffer) ขณะเดียวกันวงจรบนการ์ดควบคุมจะส่งสัญญาณไปยังหน่วยประมวลผลกลาง (CPU) ซึ่งก็คือไมโครโปรเซสเซอร์ เบอร์ 8088, 80286 หรือ 80386 เป็นต้น เพื่อให้ตัวซีพียูโอนย้ายข้อมูลจากบัฟเฟอร์ข้อมูลไปยังหน่วยความจำหลักของคอมพิวเตอร์

            จากรูปแสดงการโอนย้ายข้อมูลระหว่างฮาร์ดดิสค์กับหน่วยความจำ การโอนย้ายข้อมูลข้างต้นอาจทำได้ 2 วิธี คือ ถ้าเป็นเครื่องรุ่น AT และ PS/2 ตัวซีพียูจะทำงานนั้นโดยตรงผ่านตัวมันไปหน่วยความจำ แต่ถ้าเป็นเครื่องรุ่นเก่าคือ PC และ XT การโอนย้ายข้อมูลจะกระทำผ่านชิพดีเอ็มเอ (DMA) ที่ย่อมาจาก Direct Memory Access โดยจะโอนย้ายข้อมูลจากบัฟเฟอร์ข้อมูลไปหน่วยความจำหลักไม่ต้องผ่านตัวซีพียูทั้งนี้เพราะตัวซีพียูเบอร์ 8088 ของเครื่องรุ่น XT หรือ PC ทำงานช้า ไม่ทันต่ออัตราความเร็วของการโอนย้ายข้อมูลของฮาร์ดดิสค์ ข้อมูลที่โอนย้ายไปยังหน่วยความจำแรม จะเก็บในพื้นที่เรียกบัฟเฟอร์ของดอส ซึ่งหนึ่งบัฟเฟอร์จะเก็บข้อมูลจากดิสค์ได้ 1 เซกเตอร์ จำนวนบัฟเฟอร์นี้ผู้ใช้งานควรจะเป็นผู้กำหนดขึ้นเองจากคำสั่ง BUFFERS บรรจุในไฟล์ราว 20 บัฟเฟอร์ เมื่อเราอ่านข้อมูลไฟล์จากดิสค์ไปเก็บในบัฟเฟอร์ของดอส และบรรจุในบัฟเฟอร์จนเต็มครบหมด การโอนย้ายเซกเตอร์ต่อไปจะยึดตามหลักว่า บัฟเฟอร์ใดถูกเรียกใช้จากโปรแกรมใช้งานล่าสุดน้อยที่สุด (least recently accessed) ก็จะถูกแทนที่เขียนทับใหม่ ข้อมูลที่อยู่ในบัฟเฟอร์ดอสจะโอนย้ายไปยังหน่วยความจำอื่นตามความต้องการของโปรแกรมประยุกต์ใช้งาน
            การบันทึกข้อมูลบนดิสค์ ก็กระทำในลักษณะตรงกันข้ามกับการอ่านข้อมูล โดยโปรแกรมประยุกต์ใข้งานจะแจ้งตำแหน่งข้อมูลที่ต้องการเขียนไปยังดอส ดอสก็จะโอนย้ายข้อมูลไปยังบัฟเฟอร์และส่งผ่านไปยังบัฟเฟอร์ข้อมูลบนการ์ดควบคุมดิสค์ วงจรบนการ์ดควบคุมดิสค์จะกำหนดแทร็กเซกเตอร์ และหน้าของดิสค์ที่ใช้บันทึก ส่งสัญญาณเพื่อเลื่อนหัวอ่านเขียนไปยังตำแหน่งที่ต้องการ และโอนย้ายข้อมูลจากบัฟเฟอร์ไปเก็บบันทึกในดิสค์
การ์ดควบคุมฮาร์ดดิสค์
            เนื่องจากฮาร์ดดิสค์ไม่สามารถทำงานเก็บข้อมูลเองได้ เราจำเป็นต้องมีการ์ดควบคุมมาบอกการทำงานประกอบด้วย ตามปกติการ์ดนี้จะใช้เสียบเข้าช่องสล้อตสำหรับการเพิ่มขยาย สัญญาณที่เข้าหรือออกจากฮาร์ดดิสค์จะต้องผ่านการ์ดควบคุมนี้ก่อนเสมอ การ์ดควบคุมแต่ละชุดจะมีวิธีการเข้ารหัสเฉพาะสำหรับช่องไดรฟ์ เราไม่สามารถนำการ์ดควบคุมอื่นที่ใช้วิธีการเข้ารหัสที่แตกต่างกันมาอ่านข้อมูลในฮาร์ดดิสค์ ฮาร์ดดิสค์นั้นจะต้องทำการฟอร์แมตใหม่จึงจะใช้งานกับการ์ดควบคุมนั้น ชนิดของการ์ดควบคุมที่นิยมใช้ในปัจจุบันขึ้นกับอินเตอร์รัฟต์ที่มีอยู่ 4 ชนิด คือ
 
            1. ชนิด ST-506/41L
               เป็นระบบควบคุมมาตราฐานเริ่มแรกที่ใช้กับเครื่องพีซี มีวิธีการเข้ารหัสแบบ MFM แล้วภายหลังจึงได้ขยายเป็นแบบ RLL และ ARLL ตามเทคโนโลยีของวัสดุที่ใช้ ข้อสังเกตประการหนึ่งที่บอกข้อแตกต่างของการเข้ารหัสแบบ MFM และ RLL คือการแบ่งเซกเตอร์ในแทร็ก ช่องไดรฟ์แบบ MFM จะใช้ 17 คลัสเตอร์ต่อแทร็ค และ ไดรฟ์แบบ RLL จะใช้ 26 คลัสเตอร์ต่อแทร็ค โดยแบบ RLL จะมีความจุได้มากกว่าราว 30% จะตรงกับฮาร์ดดิสค์ช่องไดรฟ์ขนาด 20 เมกะไบต์ของแบบ MFM
            2. ชนิด ESDI (enhanced small device interfaues)
               เป็นระบบที่สูงขึ้นกว่าระบบมาตราฐาน ST-506 สำหรับไดรฟ์ความจุมากขึ้นและความเร็วสูงขึ้น นับเป็นระบบที่ออกแบบมาเพื่อใ่ช้กับเครื่องที่มีไมโครโปรเซสเซอร์ 80286 และ 80386 ที่มีความเร็วสัญญาณนาฬิกาสูงกว่า อัตราการโอนย้ายข้อมูลหรือการอ่านข้อมูลจากดิสค์จะเร็วกว่าดิสค์แบบ ST-506 ราว 4 เท่า โดยดิสค์แบบ ST-506 จะใช้กับเครื่องที่ช้ากว่า ใช้ไมโครโปรเซสเซอร์ 8088 การ์ดควบคุมแบบ ESDI สามารถต่อฮาร์ดดิสค์ได้สองตัว
            3. ชนิด SCSI (Small Computer System Interface)
               อ่านว่า "SCUZZY" เป็นการ์ดรุ่นใหม่ที่นิยมใช้กันมากขึ้น เพราะระบบนี้ไม่เพียงเป็นการ์ดควบคุมฮาร์ดดิสค์ยังเป็นการเชื่อมโยงบัสที่ชาญฉลาด(intelligent) ที่มีโปรเซสเซอร์อยู่ในตัวเองทำให้เป็นส่วนเพิ่มขยายกับแผงวงจรใหม่ ขนาดและอัตราการอ่านข้อมูลเทียบได้ใกล้เคียงกับ ESDI
               ระบบ SCSI นอกจากจะใช้เพื่อควบคุมฮาร์ดดิสค์ เรายังใช้เพื่อการควบคุมอุปกรณ์ต่อเสริมอื่น ๆ ได้ด้วยเช่น โมเด็ม, ซีดีรอม, สแกนเนอร์ และเครื่องพิมพ์ ระบบ SCSI ในหนึ่งการ์ดสนับสนุนการต่ออุปกรณ์ถึง 8 ตัว โดยคอมพิวเตอร์ที่ใช้จะถือเป็นอุปกรณ์ด้วย ดังนั้นจึงเหลือให้เราต่ออุปกรณ์ได้เพิ่มอีก 7 ตัว
               ภายใต้ดอส ระบบ SCSI จะให้เราใช้ฮาร์ดดิสค์ได้เพียง 2 ตัว(ตามการอ้างแอดเดรสของไบออส) ถ้าต้องการต่ออุปกรณ์อื่น ๆ เราต้องใช้ดีไวซ์ไดรเวอร์จากบริษัทอื่นมาทำการติดตั้งเสียก่อน
            4. ระบบ IDE (Integrated Drive Electronics)
               ระบบนี้จัดเป็นระบบใหม่ที่มีขนาดความจุใกล้เคียงกับสองแบบที่กล่าวมาแล้วคือ ESDI และ SCSI แต่มีราคาต่ำกว่า ตัวควบคุม IDE ปัจจุบันนิยมใช้บรรจุรวมอยู่ในแผงตัวควบคุม และเหลือสล้อตว่างให้ใช้งานอื่น ๆ ในระบบเก่าก็สามารถใช้ไดรฟ์แบบ IDE นี้ แต่เราต้องเพิ่มการ์ดการเชื่อมโยงเสียบสล้อต
ฮาร์ดดิสก์ทำงานอย่างไร


กล่าวคือ ฮาร์ดิสก์จะทำงานหมุนแผ่นโลหะกลมที่ใช้สำหรับเก็บข้อมูล(ptatters) อยู่ตลอดเวลา  การเข้าไปอ่านหรือเขียนฮาร์ดดิสก์แต่ละครั้ง  หัวอ่านซึ่งลอยอยู่เหนือผิวดิสก์โลหะนิดเดียว  ขนาดความจุ  ความสามารถ  และรูปแบบของฮาร์ดิสก์ก็ได้มีการเปลี่ยนแปลงไปอย่างรวาดเร็วหลังจากมีการเปิดตัวฮาร์ดิสก์พร้อมๆ กับเครื่อง  IBM  XT  จากเดิมมีความจุเพียง 10  เมกะไบต์   มีความหนา  3  ถึง  4  นิ้ว  จนต้องใช้ช่องใส่ขนาด  5.25  นิ้ว  ความเร็วการเข้าถึงข้อมูล  87  มิลลิวินาที  เปลี่ยนไปเป็นความจุ 200 เมกะไบต์ มีขนาดเล็กกว่าฟลอปปี้ดิสก์  3.5 นิ้ว นิ้ว  ความเร็วการเข้าถึงข้อมูล  18  มิลลิวินาที และในปัจจุบันมีการเปลี่ยนแปลงความจุ เป็นหน่วยกิกะไบต์แล้ว  ขนาดก็เล็กลงพร้อมกันนั้นยังสามารถเคลื่อนย้ายได้สะดวกเหมือนกับฟลอปปี้ดิสก์แล้ว 
1. ตัวถังของฮาร์ดิสก์จะเป็นแผ่นโลหะจะเป็นแผ่นโลหะหุ้มโดยรอบและไม่มีรอยรั่วเพื่อป้องกันฝุ่นผงเข้าตัวฮาร์ดดิสก์  สาเหตุที่เตาต้องป้องกันฝุ่นผงก็คือ ฝุ่นผงมักจะมีขนาดใหญ่พอที่จะเข้าไปแทรกช่องว่าระหว่างหัวอ่านกับแผ่นดิสก์  ครั้นหัวอ่านเคลื่อนที่ก็จะเป็นการลากถูฝุ่นผงไปบนผิวดิสก์  ทำให้สารแม่เหล็กที่เคลือบผิวเป็นรอยขีดข่วนเสียหาย  และไม่สามารถเก็บข้อมูลได้ 
2. ที่ด้านล่างสุดเป็นแผ่นวงจรอิเล็กทรอนิกส์ควบตุมการทำงานของหัวอ่านและการหมุนดิสก์  เราเรียกแผงวงจรนี้ว่า ลอจิกบอร์ด (logic  board) แล้วแปลงคำสั่งดังกล่าวให้เป็นสัญญาณไฟฟ้า  เพื่อกระทำหัวอ่านให้เป็นแม่เหล็กตามจังหวะ  ข้อมูลที่ป้อนให้กับมัน  นอกจากนั้นลอกจิกบอร์ดยังทำหน้าที่ควบคุมความเร็วในการหมุนดิสก์ให้คงที่  และบอกให้หัวอ่านเคลื่อนที่ไปมายังบริเวณข้อมูลที่ต้องการเขียน/อ่านอีกด้วย  สำหรับดิสก์ที่เป็นระบบ  IDE (Intergrated  Drive  Electribuc/x)  คอนโทรลเลอร์สำหรับควบคุมดิสก์จะประกอบเป็นส่วนหนึ่งของลอจิกบอร์ดไปเลย 
3. แกนหมุนซึ่งประกอบด้วยแผ่นดิสก์โลหะ  4  แผ่น  8  หน้า  จะเชื่อมติดกับมอเตอร์แล้วหมุนด้วยความเร็วหลายพันรอบต่อวินาที  จำนวนแผ่นดิสก์และหน้าดิสก์ที่มีการเคลือบสารแม่เหล็กจะเป็นตัวบอกขนาดความจุข้อมูลของฮาร์ดดิสก์  อนึ่ง  การเคลือบสารแม่เหล๊กที่เป็นอัลลอย(alloy)  จะเคลือบบางเพียงเศษสามส่วนล้านนิ้วเท่านั้น 
4. แกนหัวอ่านซึ่งถูกกระตุ้นการทำงานด้วยกระแสไฟฟ้า  จะถึงหรือผลักแขนหัวอ่านให้วิ่งไปทั่วแผ่นดิสก์ด้วยความแม่นยำ  โดยการปรับแต่งการหมุนของแกนหัวอ่านจะกระทำอยู่ตลอดเวลา  โดยการอ่านตำแหน่งแทร็กที่มีการเขียนเป็นแนววงกลมทั่วไปบนแผ่นดิสก์ 
5. หัวอ่าน/เขียน  จะติดอยู่กับแขนที่ยิ่นออกไปบนแผ่นดิสก์  เวลาเขียนข้อมูล  หัวอ่านจะนำข้อมูลที่มาจากตัวควบคุมดิสก์(disl  controller)  แปลงเป็นสนามแม่เหล็กเพื่อเหนี่ยวนำให้สารเคลือบผิวเกิดการเรียงตัวใหม่  โดยให้เป็นไปในทิศทางของข้อมูลในทางกลับกันหรือในการอ่านหัวอ่านก็จะว่างผ่านสนามแม่เหล็กที่เกิดจากสารแม่เหล็กที่ผิว  แล้วถอดรหัสสนามแม่เหล็กเหล่านั้นให้กลายเป็นข้อมูล 
6. เมื่อซอฟต์แวร์ของคุณบอกให้ดอสอ่านหรือเขียนข้อมูล  ดอสจะสั่งให้หัวอ่านวิ่งไปที่แฟต (FAT) ซึ่งเป็นบริเวณที่เก็บดัชนีชี้ตำแหน่งที่อยู่ของไฟล์ต่างๆ  บนดิสก์  ข้อมูลในแฟตนี้จะทำให้หัวอ่านสามารถกระโดดไปอ่านข้อมูลไฟล์ที่คลัสเตอร์นั้นๆ  ได้ทันที  กรณีที่เป็นการเขียนข้อมูล  หัวอ่านก็จะกระโดดไปคลัสเตอร์ที่แฟตบอกว่าว่างได้เช่นเดียวกัน 
7. ไฟล์หนึ่งๆ  อาจถูกแบ่งซอยออกเป็นหลายคลัสเตอร์  แต่ละคลัสเตอร์อาจอยู่บนและแผ่นคนละหน้าดิสก์ก็ได้  การไม่ต่อเนื่องของไฟล์นี้เองทำให้แฟต (FAT) มีความสำคัญ  กล่าวคือ  แฟตจะบอกว่าคลัสเตอร์ใดเป็นคลัสเตอร์เริ่มต้น  จากนั้นจะมีการบอกคลัสเตอร์ต่อไปของไฟล์เหมือนการโยงโซ่ไปเรื่องๆ  จนครบทั้งไฟล์  ในการกรณีที่มีการเขียนข้อมูลลงดิสก์  แฟตจะบอกว่าคลัสเตอร์ไหนที่ว่าง  ดอสก็จะสั่งให้หัวอ่านวิ่งไปเขียนข้อมูลในคลัสเตอร์ที่ว่าง  ซึ่งอาจจะมีหลายคลัสเตอร์ที่ไม่ต่อเนื่อง  เมื่อเขียนเสร็จดอสจะสั่งให้หัวอ่านกลับไปที่แฟตอีกที  เพื่อเขียนบันทึกการโยงคลัสเตอร์แต่ละคลัสเตอร์เข้าด้วยกันเป็นหนึ่งไฟล์ 
จานแสง  ในช่วงสิบปีที่ผ่านมา ฮาร์ดดิสก์มีบทบาทและความสำคัญต่อการใช้งานสูงมาก ความจุของอาร์ดดิสก์ได้เพิ่มมากขึ้น จากเดิมที่มีความจุเพียง 10 เมกะไบต์ ในปัจจุบันมีความจุหลายร้อยเมกะไบต์ ราคาของฮาร์ดดิสก์ก็ลดต่ำลงจนทำให้ขนาดความจุต่อราคาถูกลงมาก และมีผลดีกว่าการใช้แผ่นบันทึกข้อมูล ไมโครคอมพิวเตอร์จึงมีฮาร์ดดิสก์เป็นอุปกรณ์พื้นฐานประกอบอยู่ด้วยเสมอ ถึงแม้ว่าฮาร์ดดิสก์จะได้รับการพัฒนาไปมากแล้วก็ตาม แต่ความต้องการใช้แหล่งเก็บข้อมูลขนาดเล็กที่สามารถเก็บข้อมูลได้จำนวนมากและพกพาได้สะดวกก็ยังมีอยู่ แม้แผ่นบันทึกข้อมูล 3.5 นิ้วสะดวกในการพกพา แต่ความจุยังไม่พอกับความต้องการ เพราะโปรแกรมสมัยใหม่จะเป็นโปรแกรมที่ต้องใช้เนื้อที่มาก ดังนั้นจึงมีการพัฒนาแหล่งเก็บข้อมูลที่ใช้เทคโนโลยีจานแสง (optical disk)
จุดเด่นที่สำคัญของจานแสง คือ การอ่านหรือบันทึกข้อมูลที่ไม้ต้องให้หัวอ่านกดลงหรือสัมผัสกับจาน การอ่านจะใช้ลำแสงส่องและสะท้อนกลับ จานก็มีขนาดเล็กกะทัดรัด ไม่อ่าน ไม่ต้องกลับหัวอ่าน และคงทนมีอายุการใช้งานได้ยาวนาน
จานแสงเป็นเทคโนโลยีที่มีการแข่งขันในเชิงการผลิต พัฒนาการของจานแสงเติบโตค่อนข้างรวดเร็ว โดยเฉพาะเทคโนโลยีที่ใช้กับเครื่องเสียงและวีดีโอ ด้วยเหตุนี้เองการนำจานแสงมาใช้ในงานด้านข้อมูลจึงเป็นสิ่งที่หลีกเลี่ยงไม่ได้ เทคโนโลยีทางด้านจานแสง ที่กำลังได้รับการนำมาใช้ในระบบคอมพิวเตอร์ในขณะนี้ มี 3 เทคโนโลยี
เทคโนโลยีแรก คือ ซีดีรอม (Compack Disk Read only Memory : CDROM) ซึ่งเป็นเทคโนโลยีที่ใช้งานแสงกับเครื่องเสียงสเตอริโอ การใช้ซีดีรอมในระบบคอมพิวเตอร์มีจุดมุ่งหมายเพื่อเก็บข้อมูลจำนวนมาก และสามารถเก็บข้อมูล ในรูปข้อความ ข่าวสาร รูปภาพ เสียงรวมทั้งภาพวีดีโอไว้ในแผ่นซึ่งพร้อมที่จะนำมาใช้ได้ทันที แผ่นซีดีรอมหนึ่งแผ่นสามารถเก็บข้อมูลได้ถึงสามแสนหน้าหรือเทียบได้กับหนังสือ 150 เล่ม
หน่วยขับซีดีรอมเป็นสิ่งที่ต้องต่อเพิ่มลงในระบบคอมพิวเตอร์ และหากให้หน่วยขับซีดีรอม 

มีช่องสัญญาณต่อกับเครื่องขยายเสียงจะทำให้ใช้ร่วมกันกับแผ่นที่ใช้เล่นเพลงได้หน่วยขับซีดีรอมในปัจจุบันมีราคาไม่แพง ส่วนใหญ่ใช้เก็บข้อมูล สารานุกรม คัมภีร์ไบเบิล แผ่นที่ ข้อมูลงานวิจัย หรือเอกสารทางวิชาการที่สำคัญ การใช้ซีดีรอมเก็บโปรแกรม ผู้ขายซอฟต์แวร์จะนำโปรแกรมทั้งหมดบรรจุในแผ่นซีดีรอมตามมาตรฐาน ISO 9600 มีความจุที่ใช้ 600 เมกะไบต์ การเชื่อมต่อกับไมโครคอมพิวเตอร์มักใช้แผงวงจรควบคุม
เทคโนโลยีที่สอง คือ เวิร์ม (Write Once Read : WORM) เทคโนโลยีนี้ให้ผู้ใช้เขียนข้อมูลลงไปได้เพียงครั้งเดียว แต่อ่านได้หลายครั้ง เวิร์มเป็นเทคโนโลยีโดดเดี่ยว เพราะแนวทางการพัฒนาไม่ได้พัฒนาจากเทคโนโลยีใด ตัวแผ่นเป็นโลหะ ใช้เทคโนโลยีเลเซอร์ การที่ทำให้แผ่นสามารถเขียนได้หนึ่งครั้งนี้เองจึงทำให้แตกต่างจากซีดีรอม ปัจจุบันยังไม่มีมาตรฐานที่กำหนดออกมาเฉพาะ บริษัทที่ผลิตยังใช้รูปแบบแตกต่างกัน ปัจจุบันองค์การว่าด้วยเรื่องมาตรฐานระหว่างประเทศ (International Standard Organization : ISO) พยายามกำหนดความจุไว้ที่ 650 เมกะไบต์ แต่สถาบันมาตรฐานแห่งชาติของสหรัฐอเมริกา (American National Standard Institute : ANSI) ได้กำหนดความจุที่ 1.2 จิกะไบต์ เวิร์มจึงเป็นจานแสงชนิดหนึ่งที่ผู้ใช้สามารถนำข้อมูลเข้าไปเก็บได้และเก็บไว้อย่างถาวร
เทคโนโลยที่สาม คือ เทคโนโลยีที่จะทำให้จานแสงสมบูรณ์แบบ กล่าวคือ สามารถเขียนอ่านได้เหมือนฮาร์ดดิสก์ จึงมีชื่อเรียกหลายชื่อ เช่น จานแสงแม่เหล็ก และจานแสงที่เขียนซ้ำได้ เป้าหมายสุดท้ายที่ต้องการของจานแสงคือ ทำให้มีคุณสมบัติเหมือนฮาร์ดดิสก์สามารถเขียนอ่านข้อมูลได้ โดยรวมข้อดีไว้หลายประการ เช่น ความจุ ความคงทนของข้อมูลเก็บไว้ได้นาน ไม่ขึ้นกับสนามแม่เหล็ก ใช้งานง่าย มีขนาดเล็ก และที่สำคัญต้องเขียนอ่านได้เร็ว เทคโนโลยีที่ใช้ในการสร้างจานแสงที่เขียนอ่านได้ จึงมีหลายเทคโนโลยีแตกต่างกันไป เช่น ใช้คุณสมบัติแม่เหล็กผสมกับแสง แสงที่ใช้เป็นแสงเลเซอร์ นอกจากนี้มีการใช้เทคโนโลยีที่ทำให้แสงเลเซอร์ตกกระทบพื้นผิวของแผ่น ส่วนอีกเทคโนโลยีหนึ่งเป็นการใช้คุณสมบัติของผลึกในเนื้อสารที่เปลี่ยนไปกับแสงเลเซอร์
จอภาพ (Moniter)

ในบรรดาเทคโนโลยีทั้งสามที่กล่าวถึง ซีดีรอมเป็นเทคโนโลยีที่เติบโตและใช้งานอย่างกว้างขวาง จึงมีการนำมาใช้เก็บข้อมูลต่าง ๆ มากมาย


คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/moniter_h1.gif การแสดงผลบนจอภาพเป็นเรื่องที่จำเป็นสำหรับการใช้ไมโครคอมพิวเตอร์ วิวัฒนาการของการแสดงผลได้พัฒนาก้าวหน้าขึ้น มาตรฐานการแสดงผลที่ใช้กับไมโครคอมพิวเตอร์มีพื้นฐานมาจากการพัฒนาของบริษัทไอบีเอ็ม ในยุคต้นความต้องการของการแสดงผลส่วนใหญ่ยังเป็นแบบตัวอักษรโดยมีภาวะการทำงาน (mode) แยกจากการแสดง กราฟิก แต่ในปัจจุบันซอฟต์แวร์จำนวนมากสามารถแสดงผลในภาวะกราฟิก เช่น ระบบปฎิบัติงานวินโดวส์ ต้องใช้ภาวะการแสดงผลในรูปกราฟิกล้วน ๆ ผู้ใช้สามารถกำหนดขนาดช่องหน้าต่าง หรือการแสดงผลได้ตามที่ต้องการ จอภาพจึงเป็นส่วนสำคัญมากส่วนหนึ่งสำหรับผู้ใช้งานในยุคปัจจุบัน
ในยุคแรกตั้งแต่ พ.ศ. 2524 บริษัทไอบีเอ็มได้พัฒนาระบบการแสดงผลที่ใช้กับจอภาพสีเดียวที่เรียกว่าโมโนโครม หรือ เอ็มดีเอ (Monochrome Display Adapter : MDA) และแสดงผลได้เฉพาะภาวะตัวอักษรแต่เพียงอย่างเดียวแต่ให้ความละเอียดสูง หากต้องการแสดงผลในภาวะกราฟิกก็ต้องเลือกภาวะการแสดงผลอีกแบบหนึ่งที่เรียกว่า ซีจีเอ (Color Graphic Adapter : CGA) ที่สามารถแสดงสีและกราฟิกได้แต่ความละเอียดน้อย
เมื่อมีผู้ผลิตไมโครคอมพิวเตอร์ยี่ห้อต่าง ๆ ที่มีระบบการทำงานแบบเดียวกับคอมพิวเตอร์ของไอบีเอ็ม (IBM compatible) ไอบีเอ็มจึงต้องกำหนดมาตรฐานการแสดงผลไว้ ต่อมาบริษัทเฮอร์คิวลีส ซึ่งเห็นปัญหาของระบบการแสดงผลทั้งสองนี้ จึงออกแบบแผลวงจรแสดงผล เรียกกันติดปากว่าแผงวงจรเฮอร์คิวลิส (herculis card) หรือ เอชจีเอ (Herculis Graphic Adapter : HGA) บางครั้งเรียกว่าโมโนโครกราฟิกอะแดปเตอร์หรือเอ็มจีเอ (Monochrome Graphic Adapter : MGA) การแสดงผลแบบนี้เป็นที่แพร่หลายและนิยมใช้กันต่อเนื่องมาและมีผลิตขึ้นมาใช้กันมากมาย
ต่อมาบริษัทไอบีเอ็มเห็นว่าความต้องการทางด้านกราฟิกสูงขึ้น การแสดงสีควรจะมีรายละเอียดและจำนวนสีมากขึ้น จึงได้พัฒนามาตรฐานการแสดงผลบนจอภาพขึ้นอีกโดยปรับปรุงจากเดิมเรียกว่า อีจีเอ (Enhance Graphic Adapter : EAG) การเพิ่มเติมจำนวนสียังไม่พอเพียงกับซอฟต์แวร์ที่ได้รับการพัฒนาให้ใช้กับระบบปฎิบัติการวินโดวส์และโอเอสทูไอบีเอ็มจึงสร้างมาตรฐานการแสดงผลที่มีความละเอียดและสีเพิ่มยิ่งขึ้นเรียกว่า เอ็กซ์วีจีเอ (eXtra Video Graphic Array : XVGA)
การเลือกซื้อจอภาพจะตัองพิจารณาความสัมพันธ์ของจอภาพกับตัวปรับต่อซึ่งเป็นแผงวงจรอิเล็กทรอนิกส์ที่ติดตั้งอยู่บนแผงวงจรหลัก (main board) และต่อสัญญาณมายังจอภาพ แผงวงจรนี้จะเป็นตัวแสดงผลตามมาตรฐานที่ต้องการ มีภาวะการแสดงผลหลายแบบ เช่น
ก. แผงวงจรโมโนโครมหรือแผงวงจรเอ็มดีเอ เป็นแผงวงจรที่ไม่ค่อยนิยมใช้แล้วแสดงผลได้เฉพาะตัวอักษรจำนวน 25 บรรทัด บรรทัดละ 80 ตัวอักษร ขนาดความละเอียดของตัวอักษรเป็น 9x14 ชุด
ข. แผงวงจรเฮอร์คิวลิสหรือแผงวงจรเอชจีเอ แสดงผลเป็นตัวอักษรขนาด 25 บรรทัด บรรทัดละ 80 ตัวอักษร เหมือนแผงวงจรเอ็มดีเอ แต่สามารถแสดงกราฟิกแบบสีเดียวด้วยความละเอียด 720x348 จุด
ค. แผงวงจรอีจีเอ เป็นแผงวงจรที่แสดงด้วยความละเอียดของตัวอักษรขนาด 9x14 จุดแสดงสีได้ 16 สี ความละเอียดของการแสดงกราฟิก 640x350 จุด
ง. แผงวงจรวีจีเอ  เป็นแผงวงจรที่แสดงด้วย ความละเอียดของตัวอักษร 9x16 จุด แสดงสีได้ 16 สี แสดงกราฟิกด้วยความละเอียด 640x480 จุด และแสดงสีได้สูงถึง 256 สี
จ. แผงวงจรเอ็กซ์วีจีเอ  เป็นแผงวงจรที่ปรับปรุงจากแผงวงจรวีจีเอ แสดงกราฟิกด้วยความละเอียดสูงขึ้นเป็น 1,024x768 จุด และแสดงสีได้มากกว่า 256 สี
เมื่อได้ทราบว่าตัวปรับต่อมีกี่แบบแล้ว คราวนี้มาดูมาตรฐานตัวเชื่อมต่อ (connector) ของตัวปรับต่อกับจอภาพบ้าง ตัวเชื่อมต่อมาตรฐานที่ใช้มีแบบ 9 ขา ตัวเชื่อมต่อสำหรับแผงวงจรแบบ วีจีเอ และ เอสวีจีเอ เป็นแบบ 15 ขา การที่หัวต่อไม่เหมือนกันจึงทำให้ใช้จอภาพพร่วมกันไม่ได้

นอกจากตัวเชื่อมต่อและตัวปรับต่อแล้ว คุณภาพของจอภาพก็จะต้องได้รับการพิจารณาอย่างมาก สัญญาณที่ส่งมายังจอภาพมีรูปแบบไม่เหมือนกัน สัญญาณของแผงวงจรแบบวีจีเอเป็นแบบแอนะล็อก สัญญาณของแผงวงจรแบบ เอ็มดีเอ ซีจีเอ เอชจีเอ อีจีเอ เป็นแบบดิจิทัล ข้อพิจารณาที่จะตรวจสอบด้วยตาเปล่าได้ คือ การแสดงผลจะต้องเป็นจุดเล็กละเอียดคมชัด ไม่เป็นภาพพร่าหรือเสมือนปรับโฟกัสไม่ชัดเจน  ภาพที่ได้จะต้องมีลักษณะของการกราดตามแนวตั้งคงที่ สังเกตได้จากขนาดตัวหนังสือแถวบน กับแถวกลางหรือแถวล่างต้องมีขนาดเท่ากันและคมชัดเหมือนกัน ภาพที่ปรากฎจะต้องไม่กระพริบถึงแม้จะปรับความเข้มของแสงเต็มี่ ภาพไม่สั่งไหวหรือพลิ้ว การแสดงของสีต้องไม่เพี้ยนจากสีที่ควรจะเป็น
พิจารณารายละเอียดทางเทคนิคของจอภาพ เช่น ขนาดของจอภาพซึ่งจะวัดตามแนวเส้นทะแยงมุมของจอ ว่าเป็นขนาดกี่นิ้ว โดยทั่วไปจะมีขนาด 14 นิ้ว จอภาพที่แสดงผลงานกราฟิกบางแบบอาจต้องใช้ขนาดใหญ่ถึง 20 นิ้ว ความละเอียดของจุดซึ่งสามารถสังเกตได้จากสัญญาณแถบความถี่ของจอภาพ จอภาพแบบวีจีเอควรมีสัญญาณแถบความถี่สูงกว่า 25 เมกะเฮิรตซ์ สัญญาณแถบความถี่ยิ่งสูงยิ่งดี จอภาพแบบเอ็กซ์วีจีเอแสดงผลแบบมัลติซิงค์ (multisync) ใช้สัญญาณแถบความถี่สูงกว่า 60 เมกะเฮิรตซ์ ขนาดของจุดยิ่งเล็กยิ่งมีความคมชัด เช่น ขนาดจุด .28 มิลลิเมตร ภาพที่ได้จะคมชัดกว่าขนาดจุด .33 มิลลิเมตร ค่าของสัญญาณแถบความถี่จึงเป็นข้อที่จะต้องพิจารณาด้วย

 
คำอธิบาย: http://web.ku.ac.th/schoolnet/snet1/hardware/moniter_h2.gif เป็นเทคโนโลยีที่เริ่มพัฒนาประมาณสิบกว่าปีนี้เอง เริ่มจากการพัฒนามาใช้กับนาฬิกาและเครื่องคิดเลข เป็นจอแสดงผลตัวเลขขนาดเล็ก ใช้หลักการปรับเปลี่ยนโมเลกุลของผลึกเหลว เพื่อปิดกั้นแสงเมื่อมีสนามไฟฟ้าเหนี่ยวนำ แอลซีดีจึงใช้กำลังไฟฟ้าต่ำ เหมาะกับภาคแสดงผลที่ใช้กับแบตเตอรี่หรือถ่านไฟฉายก้อนเล็ก ๆ แอลซีดีในยุคแรกตอบสนองต่อสัญญาณไฟฟ้าช้า จึงเหมาะกับงานแสดงผลตัวเลขยังไม่เหมาะที่จะนำมาทำเป็นจอภาพ
เมื่อเทคโนโลยีก้าวหน้าขึ้น ผู้ผลิตแอลซีดีสามารถผลิตแผงแสดงผลที่มีขนาดใหญ่ขึ้นจนสามารถเป็นจอแสดงผลของคอมพิวเตอร์ประเภทแล็ปท็อป โน้ตบุ๊ค และยังสามารถทำให้แสดงผลเป็นสี อย่างไรก็ตามจอภาพแอลซีดียังเป็นจอภาพที่มีขนาดเล็กแต่มีแนวโน้มที่จะพัฒนาให้มีขนาดใหญ่ขึ้น
จอภาพแอลซีดีที่แสดงผลเป็นสีต้องใช้เทคโนโลยีสูง มีการสร้างทรานซิสเตอร์เป็นล้านตัวเพื่อให้ควบคุมจุดสีบนแผ่นฟิล์มบาง ๆ ให้จุดสีเป็นตารางสี่เหลี่ยมเล็ก ๆ การแสดงผลจึงเป็นการแสดงจุดสีเล็ก ๆ ที่ผสมกันเป็นสีต่าง ๆ ได้มากมาย การวางตัวของจุดสีดำเล็ก ๆ เรียกว่าแมทริกซ์ (matrix) จอภาพแอลซีดีจึงเป็นจอแสดงผลแบบตารางสี่เหลี่ยมเล็ก ๆ ที่มีจุดสีจำนวนมาก


จอภาพแอลซีดีเริ่มพัฒนามาจากเทคโนโลยีแบบพาสซีฟแมทริกซ์ที่ใช้เพียงแรงดันไฟฟ้าควบคุมการปิดเปิดแสงให้สะท้อนจุดสีมาเป็นแบบแอกตีฟแมทริกซ์ที่ใช้ทรานซิสเตอร์ตัวเล็ก ๆ เท่าจำนวนจุดสี ควบคุมการปิดเปิดจุดสีเพื่อให้แสงสะท้อนออกมาตามจุดที่ต้องการ ข้อเด่นของแอกตีฟแมทริกซ์คือมีมุมมองที่กว้างกว่าเดิมมาก การมองด้านข้างก็ยังเห็นภาพอย่างชัดเจน จอภาพแอลซีดีแบบแอกตีฟแมทริกซ์มีแนวโน้มที่เข้ามาแข่งขันกับจอภาพแบบซีอาร์ทีได้
จอภาพแบบแอลซีดีซึ่งมีลักษณะแบนราบจะมีขนาดเล็กและบาง เมื่อเปรียบเทียบกับจอภาพแบบซีแอลที หากจอภาพแบบแอกตีฟแมทริกซ์สามารถพัฒนาให้มีขนาดใหญ่กว่า 15 นิ้วได้ การนำมาใช้แทนจอภาพซีอาร์ที ก็จะมีหนทางมากขึ้น
ความสำเร็จของจอภาพแอลซีดีที่จะเข้ามาแข่งขันกับจอภาพแบบซีอาร์ที่อยู่ในเงื่อนไขสองประการ คือ จอภาพแอลดีซีมีราคาแพงกว่าจอภาพซีอาร์ที และมีขนาดจำกัด ในอนาคตแนวโน้มด้านราคาของจอภาพแอลซีดีจะลดลงได้อีกมาก และเทคโนโลยีสำหรับอนาคตมีโอกาสเป็นไปได้สูงมากที่จะทำให้จอภาพแอลซีดีขนาดใหญ่
เทคโนโลยีจอภาพแสดงผล

จอภาพ LCD และ CRT
       เทคโนโลยีสารสนเทศได้เข้ามามีบทบาทต่อชีวิตประจำวันอย่างมาก การใช้เครื่องมือต่างๆ ในชีวิตประจำวันเกี่ยวข้องกับการแสดงผลเพื่อที่จะให้ข้อมูลข่าวสารปรากฎแก่สายตาของผู้ใช้พัฒนาการของจอภาพจึงต้องพัฒนาตามอย่างต่อเนื่อง

        คอมพิวเตอร์เป็นเทคโนโลยีที่ขึ้นกับการแสดงผล ผู้ใช้คอมพิวเตอร์ต้องติดต่อกับเครื่องผ่านทางเป้นพิมพ์และ แสดงผลออกมาทางจอภาพและการแสดงผลนั้นก็ได้รับการพัฒนาจากหลอดภาพ CRT และแผงแสดง LCD
        CRT มีการใช้กันอย่างกว้างขวางเพราะเป็นเทคโนโลยีที่ได้รับการพัฒนามานาน CRT เป็นจอภาพที่ใช้กับโทรทัศน์และ พัฒนาต่อให้ใช้กับจอภาพของคอมพิวเตอร์ ปัจจุบันได้มีการผลิตจอภาพหลายสิบล้านเครื่องต่อปี หากพิจารณาที่เเทคโนโลยีการแสดงผล โดยพิจารณาหลักการของการใช้แสงเพื่อสร้างงาน เราสามารถแบ่งแยกหลักการออกเป็น 2 ประเภท :-
1.             การให้แหล่งกำเนิดแสงแสดงภาพและตัวอักษรดยตรง

หลักการนี้ใช้ในจอภาพ CRT ซึ่งอาศัยลำอิเล็กตรอนกระทบกับสารเรืองแสงที่ติดอยู่กับจอภาพ สารเรืองแสงจะเปล่งแสงออกมาใมห้ตามองเห็น
2.             การใช้แสงที่มีอยู่แล้วให้เกืดคุณค่า

โดยการใช้หลักการสะท้าน หรือสร้างสิ่งแวดว้อมให้ส่องทะลุ กล่าวคือ ปิดเปิดลำแสงที่มีอยู่แล้วด้วยการ ให้ส่องทะลบุผ่านหรือกั้นไว้ หรือสะท้อน เป็นลักษณะของเทคโนโลยี LCD ( Liquid Crystal )แผงแสดงผลึกเหลว


        อย่างไรก็ดี การแสดงผลบนจอภาพส่วนใหญ่ใช้เทคโนโลยี CRT เพราะ CRT มีราคาถูกกว่า มีการพัฒนามานาน มีการผลิตในขั้นอุตสาหกรรมมาก มีความทนทาน เชื่อถือได้ CRT จึงเป็นเทคโนโลยีที่อยู่คู่คอมพิวเตอร์ โดยเฉพาะไมโครคอมพิวเตอร์ตั้งแต่เริ่มต้น
        สำหรับ LCD นั้นได้เริ่มนำมาใช้ในจอแสดงผลในเครื่องคอมพิวเตอร์แบบแลปท็อป แบบโน๊ตบุ้ค แบบพาล์มท็อป การแสดงผลของ LCD มีลักษณะแบบแบนราบ น้ำหนักเบา กินไฟน้อย
พัฒนาการของ LCD
        LCD มีการพัฒนาก้าวหน้าขึ้นอย่างรวดเร็ว เริ่มจากการพัฒนาขึ้นเพื่อใช้กับเครื่องคิดเลขและนาฬิกาดิจิตอล หลังจากนั้นก็พัฒนาต่อเนื่องเพื่อรองรับความต้องการที่มีมากขึ้น เทคโนโลยี LCD เป็นเทคโนโลยีที่มียุคสมัย และแบ่งยุคได้ตามการพัฒนาเป็นขั้นๆเหมือนยุคของคอมพิวเตอร์
    • ยุคแรก สร้างฐานของเทคโนโลยี

ในยุคนี้เป็นยุคที่เริ่มต้นของการพัฒนา LCD เทคนิควิธีการที่ใช้เป็นแบบ DMS ( Dynamic Seattering Method )และ TN ( Twisted Nematic ) ข้อเด่นของเทคโนโลยีนี้คือ ใช้กำลังงานไฟฟ้าต่ำ ใช้แรงดันต่ำ เหมาะสมที่จะใช้งานกับเทคโนโลยี CMOS จึงนำมาประยุกต์ใช้ในเครื่องคิดเลข นาฬิกา ฯลฯ
    • ยุคที่สอง ยุคขยายฐาน

การประยุกต์ใช้งาน LCD เริ่มกว้างขวางมากขึ้น เทคโนโลยีที่ใช้ส่วนใหญ่เป็นแบบTNโดยพัฒนาให้แผงแสดง มีลักษณะบางและ กระทัดรัดและเริ่มใช้ตัวสะท้อนให้มีสี การประยุกต์ใช้งานส่วนใหญ่ยังคงเป็นเรื่องของเครื่องคิดเลข นาฬิกา ฯลฯ
    • ยุคที่สาม ยุคกระจาย

ในยุคนี้มีการผลิตแพร่หลาย มีการตั้งโรงงานการผลิต LCD กระจายขึ้นทั่วโลก เทคโนโลยีที่ใช้เป็นแบบ TN และ GH ( Guest Host ) ข้อเด่นที่ได้ในยุคนี้ก็คือ LCD มีความเชื่อถือสูง มีความคงทน มีความเข้มคมชัด ีความเร็วในการตอบสนองต่อสัญญาณ ไฟฟ้าได้เร็ว การขยายการใช้งานจึงกว้างขวางขึ้นมาก มีการประยุคใช้ในกล้องถ่ายรูปรถยนต์แผงแสดงของจอคอมพิวเตอร์เกม และอุปกรณ์สำนักงานต่างๆ การก้าวเข้าสู่รถยนต์ก็เพราะว่าสามารถลดอุปกรณ์การวัดที่ต้องอาศัยกลไกมาเป็นอิเล็กทรอนิกส์ ได้มาก การแสดงผลเป็นแบบพาสซีฟจึงไม่สามารถสร้างความเครียดให้กับสายตา
    • ยุคที่สี่ ยุคท้าทายที่จะแทน CRT

การใช้งานกว้างขวางและมีตลาดรองรับอยู่มาก เทคโนโลยีที่ก้าวเข้ามาในยุคนี้คือ การใช้ TFT หรือ Thin Film Transistor เพื่อสร้างจอภาพแสดงผลแบบแอคตีฟ ข้อดีคือ สามารถมัลติเพล็กซ์สัญญาณการแสดงผลได้เร็วทำให้จอภาพมีขนาดใหญ่ขึ้น ราคาถูกลง แสดงสีได้เหมือนนนธรรมชาติ การประยุกต์ใช้งานจึงเน้นจำพวกโทรทัศน์จอแบน จอคอมพิวเตอร์ อุปกรณ์เครื่องมือวัด เกม ฯลฯ

ความแตกต่างระหว่าง LCD กับ CRT
        LCD เป็นแผงแสดงผลที่แตกต่างจาก CRT ตรงที่ตัว LCD ไม่ได้เปล่งแสงออกมา แต่ใช้หลักการควบคุมแสง จึงมีข้อเด่นมากมายเมื่อเปรียบเทียบกับ CRT
        จุดเด่นของ LCD จึงแสดงผลได้แม้ในสิ่งแวดล้อมที่มีแสงจ้าหรือ กลาง แจ้ง การมองเห็นทำได้อย่างชัดเจนไม่จางเหมือนอุปกรณ์ ที่ กำเนิดแสงเช่น CRT หรือ LED LCE ใช้กำลังไฟฟ้าต่ำมากโดยทั่วไปใช้กำลังไฟฟ้าเพียง 1 -10 MicroWatt per Cm ใช้แรงดันไฟฟ้าขับที่แรงดันต่ำ จึงใช้วงจร CMOS ที่ทำงานเพียง 3 Volt ก็สามารถขับ LCD ได้จึงใช้ในวงจรรคอมพิวเตอร์หรือ วงจรดิจิตอลทั่วไปได้ แหล่งจ่ายไฟสำหรับ LCD ใช้แหล่งเดียวและะแรงดันไฟฟ้าระดับเดียว จึงไม่ยุ่งยากซับซ้อนในการใช้งาน

        การแสดงผลของ LCD มีความคมชัด ไม่มีการกระพริบหรือภาพสั่นไหวไม่สร้างสัญญาณเสียงรบกวน มีขนาดกกะทัดรัด น้ำหนักเบา แบนราบ ขนาดแสดงผลมีขนาดเหมาะสมกับการประยุกต์เข้ากับอุปกรณ์ต่างๆ ผู้ออกแบบการแสดงผลทำได้ตามต้องการ ด้วยเทคโนโลยี LCD แสดงผลในลักษณะหลายสี เหมือนจอ CRT ได้ การเชื่อมต่อไม่ต้องมีกลไกจึงทำให้ออกแบบประยุกต์ได้ง่าย     
หลักการเบื้องต้นของ LCD
        สารผลึกเหลวที่ใช้ใน LCD นั้นเป็นสารสังเคราะห์ที่จัดได้ว่าเป็นสารใหม่ที่พัฒนากันมาเมื่อไม่นานนี้ คำว่าผลึกเหลว ( Liquid Crystal ) หมายถึง สารที่อยู่ระหว่างของแข็งกับของเหลว ปกติสารทั่วไปเมื่อเป็นของแข็งที่อุณหภูมิหนึ่งครั้นได้รับอุณหภูมิสูงขึ้นก็จะหลอมละลายเป็นของเหลว แต่สำหรับผลึกเหลวนี้มีคุณสมบัติพิเศษคือมีช่วงอุณหภูมิที่กว้างสำหรับสถานะที่อยู่ระหว่าง ของแข็งกับของเหลว
        ผลึกเหลวจึงแตกต่างจากวัสดุทั่วไปที่มีจุดหลอมเหลวที่เปลี่ยนสถานะจากของแข็งเป็นของเหลว หรือแม้แต่พลาสติกก็จะเริ่มอ่อนตัวเมื่อได้รับความร้อนจนหลอมละลาย แต่สำหรับผลึกเหลวมีลักษณะพิเศษ ชนิดของผลึกเหลวแยกตามโครงสร้างโมเลกุลเช่น แบบเนมาติก ( nematic ) แบบสเมติก ( smetic ) แบบคอเลสเตริก
        สำหรับหลักการทำงานของมันนั้น ปรากฏการณ์ของผลึกเหลวเป็นปรากฏการณ์ที่มีลักษณะพิเศษสารอื่นๆ ในสถานะปกติ เมื่อยังไม่มีแรงดันไฟฟ้าป้อนให้ โมเลกุลของผลึกเหลววางตัวเป็นเกลียวในแนวคอลัมน์ แต่เมื่อ้อนแรงดันไฟฟ้าให้กับผลึกเหลว โครงสร้างโมเลกุลจะกระจักกระจายอย่างสุ่มดังภาพ

        โครงสร้างผลึกที่จัดตัวเป็นเกลียวจะทำให้แสงผ่านทะลุลงไปได้ แต่เมื่อมีสนามไฟฟ้า ผลึกจะกระจัดกระจาย แสงจึงผ่านไปไม่ได้ ลักษณะเช่นนี้ทำให้เกิดลักษณะการแสดงผลเป็นแบบขาวดำ